Mass spectrum of three-quark and five-quark singly heavy baryons from a chiral model

- D. Suenaga $(^1)$
- (1) Few-body Systems in Physics Laboratory, RIKEN Nishina Center, Wako 351-0198, Japan

Summary. — We construct a chiral effective model for three-quark and five-quark singly heavy baryons (SHBs) which is heavy-quark spin singlet, focusing on the $U(1)_A$ axial anomaly effects. Based on the model, we find that the anomaly effects induce the inverse mass hierarchy of negative-parity three-quark SHBs where Λ_c becomes heavier than Ξ_c . On the contrary, the anomaly effect is found to provide no effects for the mass spectrum of five-quark SHBs. We also present a predicted mass spectrum of the SHBs in the presence of the mixing between three-quark and five-quark states. The predicted five-quark dominant $\Lambda_c(-)$ whose mass is approximately 2700 MeV is expected to be a useful evidence to check our description.

1. – Introduction

Singly heavy baryons (SHBs) composed of a heavy quark and a diquark provide us with useful testing ground to explore the diquark dynamics, since the heavy quark can be regarded as a spectator due to its large mass. In this write-up, we review our recent studies on the heavy-quark spin-singlet SHBs, quark contents of which are Qqq and $Qqq\bar{q}q$, i.e., three-quark states and five-quark states, where the Roper-like $\Lambda_c(2765)$ and $\Xi_c(2970)$ are assumed to be the five-quark dominant SHBs [1, 2, 3]. In particular, we focus on effects of $U(1)_A$ axial anomaly on the SHBs based on a three-flavor chiral model.

This article is organized as follows. In Sec. 2 we introduce our chiral mode describing the three-quark and five-quark SHBs. Then, in Sec. 3 and Sec. 4, we investigate masses of the SHBs with and without mixings between the three-quark and five-quark states. Finally, in Sec. 5 we conclude the present work .

2. – Model

In this section, we introduce our chiral model to describe the three-quark and fivequark SHBs.

Toward the model construction, we invent the following four building blocks:

(1)
$$B_{R,a} \sim Q^{\alpha} d_{R,a}^{\alpha}$$
, $B_{L,i} \sim Q^{\alpha} d_{L,i}^{\alpha}$, $B_{R,i}^{\prime \alpha} \sim Q^{\alpha} d_{R,i}^{\prime}$, $B_{L,a}^{\prime} \sim Q^{\alpha} d_{L,a}^{\prime \alpha}$

D. SUENAGA

where $d_{R,a}^{\alpha}$, $d_{L,a}^{\alpha}$, $d_{R,a}^{\prime\alpha}$ and $d_{L,a}^{\prime\alpha}$ represent the conventional diquarks and the newly invented tetra-diquarks defined by [1, 3]

$$(d_{R})_{a}^{\alpha} \sim \epsilon_{abc} \epsilon^{\alpha\beta\gamma} (q_{R}^{T})_{b}^{\beta} C(q_{R})_{c}^{\gamma} ,$$

$$(d_{L})_{i}^{\alpha} \sim \epsilon_{ijk} \epsilon^{\alpha\beta\gamma} (q_{L}^{T})_{j}^{\beta} C(q_{L})_{k}^{\gamma} ,$$

$$(d_{R}')_{i}^{\alpha} \sim \epsilon_{abc} \epsilon^{\alpha\beta\gamma} (q_{R}^{T})_{b}^{\beta} C(q_{R})_{c}^{\gamma} [(\bar{q}_{L})_{i}^{\delta} (q_{R})_{a}^{\delta}] ,$$

$$(d_{L}')_{a}^{\alpha} \sim \epsilon_{ijk} \epsilon^{\alpha\beta\gamma} (q_{L}^{T})_{j}^{\beta} C(q_{L})_{k}^{\gamma} [(\bar{q}_{R})_{a}^{\delta} (q_{L})_{i}^{\delta}] ,$$

$$(2)$$

respectively. In these equations the subscripts " a, b, \cdots " and " i, j, \cdots " stand for the left-handed and right-handed chiral indices, respectively, within a three-flavor description, while the superscripts " α, β, \cdots " indicate the color indices. Thus, in Eq. (1), $B_{R,a}$ and $B_{L,i}$ are regarded as the three-quark SHBs, while $B'_{R,i}$ and $B'_{L,a}$ are the five-quark ones. The chiral representation for those diquarks reads

(3)
$$d_R \sim (\mathbf{1}, \bar{\mathbf{3}})_{+2}, d_L \sim (\bar{\mathbf{3}}, \mathbf{1})_{-2}, d'_R \sim (\bar{\mathbf{3}}, \mathbf{1})_{+4}, d'_L \sim (\mathbf{1}, \bar{\mathbf{3}})_{-4},$$

where the number attached to the respective bracket, e.g., +2 for d_R , stands for their $U(1)_A$ axial charges. The corresponding SHBs take the identical symmetry properties. We note that the chiral representations carried by d_R and d'_L are the same, likewise, those by d_L and d'_R are the same. That is, those states are distinguished by the $U(1)_A$ axial charges.

From the chiral representation (3) with definition of the SHB fields (1), one can construct a chiral model for the SHBs interacting with a light-meson nonet $\Sigma = S + iP$ whose chiral representation is $\Sigma \sim (\mathbf{3}, \bar{\mathbf{3}})_{-2}$. Our Lagrangian is based on the following counting scheme: First we include all possible terms which is invariant under both $U(1)_A$ axial and $SU(3)_L \times SU(3)_R$ chiral transformations, and next, we additionally incorporate contributions which only violate $U(1)_A$ axial symmetry to take into account the anomalous contributions with the minimal number of $\Sigma^{(\dagger)}$. Then, our chiral Lagrangian within the heavy-baryon effective theory is constructed as [3]

$$\mathcal{L}_{SHB} = \mathcal{L}_{3q} + \mathcal{L}_{5q} + \mathcal{L}_{mix} ,$$

where

$$\mathcal{L}_{3q} = \sum_{\chi=L,R} (\bar{B}_{\chi} i v \cdot \partial B_{\chi} - \mu_1 \bar{B}_{\chi} B_{\chi}) - \frac{\mu_3}{f_{\pi}^2} \Big[\bar{B}_L (\Sigma \Sigma^{\dagger})^T B_L + \bar{B}_R (\Sigma^{\dagger} \Sigma)^T B_R \Big]$$

$$- \frac{g_1}{2f_{\pi}} \left(\epsilon_{ijk} \epsilon_{abc} \bar{B}_{L,k} \Sigma_{ia} \Sigma_{jb} B_{R,c} + \text{h.c.} \right) - g_1' (\bar{B}_L \Sigma^* B_R + \text{h.c.}) ,$$
(5)

$$\mathcal{L}_{5q} = \sum_{\chi = L,R} (\bar{B}_{\chi}' i v \cdot \partial B_{\chi}' - \mu_2 \bar{B}_{\chi}' B_{\chi}') - \frac{\mu_4}{f_{\pi}^2} \Big[\bar{B}_{R}' (\Sigma \Sigma^{\dagger})^T B_{R}' + \bar{B}_{L}' (\Sigma^{\dagger} \Sigma)^T B_{L}' \Big]$$

$$- \frac{g_2}{6f_{\pi}^3} \Big[(\epsilon_{abc} \epsilon_{ijk} \Sigma_{ci}^{\dagger} \Sigma_{bj}^{\dagger} \Sigma_{ak}^{\dagger}) (\bar{B}_{R}' \Sigma^* B_{L}') + \text{h.c.} \Big]$$

$$(6) \qquad - \frac{g_3}{2f_{\pi}^3} \Big(\epsilon_{abc} \epsilon_{ijk} \bar{B}_{R,l}' \Sigma_{cl}^{\dagger} \Sigma_{bi}^{\dagger} \Sigma_{aj}^{\dagger} \Sigma_{dk}^{\dagger} B_{L,d}' + \text{h.c.} \Big) + g_2' \left(\bar{B}_{R}' \Sigma^* B_{L}' + \bar{B}_{L}' \Sigma^T B_{R}' \right) ,$$

and

(7)
$$\mathcal{L}_{\text{mix}} = -\mu'_1(\bar{B}_R B'_L + \bar{B}'_L B_R + \bar{B}_L B'_R + \bar{B}'_R B_L) - g_4(\bar{B}'_R \Sigma^* B_R + \bar{B}_L \Sigma^* B'_L + \text{h.c.}),$$

with v^{μ} and f_{π} being a velocity of the SHBs and a pion decay constant. In this Lagrangian, \mathcal{L}_{3q} describes interactions among the three-quark SHBs and light-meson nonet. Similarly, \mathcal{L}_{5q} describes those among the five-quark SHBs and the nonet. The last piece, \mathcal{L}_{mix} , is responsible for interplay between the three-quark and five-quark SHBs mediated by the light mesons. We note that only g'_1 , g'_2 and μ'_1 terms correspond to the anomalous contributions. Meanwhile, all the remaining terms proportional to μ_1 , μ_2 , μ_3 , μ_4 , g_1 , g_2 , g_3 and g_4 are $U(1)_A$ invariant although some of them are of fourth order of $\Sigma^{(\dagger)}$.

3. - Masses of the pure three-quark and five-quark SHBs

In this section, we examine the $U(1)_A$ axial anomaly effects on masses of the pure three-quark SHBs and five-quark SHBs.

First, we investigate the mass spectrum of the pure three-quark SHBs. The parity eigenstates, i.e., the mass eigenstates of them are defined by $B_{\pm,i} = (B_{R,i} \mp B_{L,i})/\sqrt{2}$, with the diagonal parts of left- and right-handed indices: i=a, where the subscript " \pm " stands for the parity eigenvalues. Here, the SHBs with i=1,2 and i=3 represent $\Xi_c^{[3]} \sim cus(cds)$ and $\Lambda_c^{[3]} \sim cud$ for the charm sector, where the superscript "[3]" is attached to emphasize that those states are three-quark SHBs. Thus, the mass formulas for $B_{\pm,i}$ are read off by quadratic terms of B_R and B_L in \mathcal{L}_{3q} in Eq. (5), which yields [3]

(8)
$$M[\Lambda_c^{[3]}(\pm)] = m_B + \mu_1 + \mu_3 \mp f_\pi(g_1 + Ag_1') ,$$

$$M[\Xi_c^{[3]}(\pm)] = m_B + \mu_1 + A^2 \mu_3 \mp f_\pi(Ag_1 + g_1') .$$

In this equation the sign " \pm " again indicates the parity eigenvalue. An arbitrary constant m_B is additionally included to defined the masses to incorporate the universal "heavy mass". Besides, in deriving the mass formulas (8), the chiral-symmetry breaking effects are taken into account by replacing the light meson nonet Σ by its vacuum expectation value: $\langle \Sigma \rangle = f_{\pi} \operatorname{diag}(1,1,A)$, where $f_{\pi} = 93$ MeV and $A = (2f_K - f_{\pi})/f_{\pi} = 1.38$.

When the ground-state SHBs are regarded as the three-quark SHBs, $M[\Lambda_c^{[3]}(+)] = 2286$ MeV and $M[\Xi_c^{[3]}(+)] = 2470$ MeV are satisfied, then two free parameters are left. When taking $M[\Lambda_c^{[3]}(-)]$ and $M[\Xi_c^{[3]}(-)]$ to be free, one can draw mass hierarchies in $M[\Lambda_c^{[3]}(-)] - M[\Xi_c^{[3]}(-)]$ plane as in Fig. 1 (a) with $g'_1 = 0$ exhibited by the blue line. In this figure, the three colored regions represent the following possible mass orderings:

$$\begin{split} \text{(I)} \quad M[\Lambda_c^{[\mathbf{3}]}(+)] < M[\Lambda_c^{[\mathbf{3}]}(-)] < M[\Xi_c^{[\mathbf{3}]}(+)] < M[\Xi_c^{[\mathbf{3}]}(-)] \ , \\ \text{(II)} \quad M[\Lambda_c^{[\mathbf{3}]}(+)] < M[\Xi_c^{[\mathbf{3}]}(+)] < M[\Lambda_c^{[\mathbf{3}]}(-)] < M[\Xi_c^{[\mathbf{3}]}(-)] \ , \\ \text{(9)} \quad \quad & \text{(III)} \quad M[\Lambda_c^{[\mathbf{3}]}(+)] < M[\Xi_c^{[\mathbf{3}]}(+)] < M[\Xi_c^{[\mathbf{3}]}(-)] < M[\Lambda_c^{[\mathbf{3}]}(-)] \ . \end{split}$$

The regions (I) and (II) indicate that the negative-parity SHBs satisfy the normal mass hierarchy $M\left[\Lambda_c^{[\mathbf{3}]}(-)\right] < M\left[\Xi_c^{[\mathbf{3}]}(-)\right]$ as naively expected from their quark contents. On the other hand, in the region (III) those masses read $M\left[\Lambda_c^{[\mathbf{3}]}(-)\right] > M\left[\Xi_c^{[\mathbf{3}]}(-)\right]$ despite

D. SUENAGA

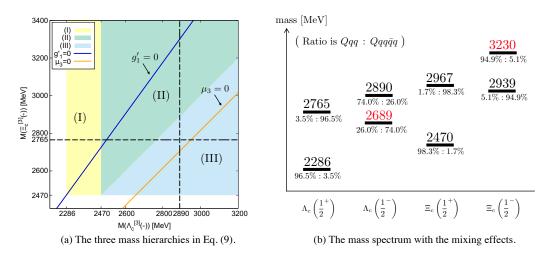


Fig. 1. – (a) The mass orderings for the pure three-quark SHBs listed in Eq. (9) where the normal [(I) and (II)] and inverse (III) mass hierarchies are explicitly shown. (b) The mass spectrum in the presence of the mixing between three-quark and five-quark SHBs. The figures are taken from Ref. [3]. Copyright 2203, American Physical Society.

the quark contents. For this reason we call this ordering the *inverse mass hierarchy*. Since the blue line in Fig. 1 (a) indicates the masses with $g'_1 = 0$ where the $U(1)_A$ axial anomaly effects are absent. Thus, we can conclude that the inverse mass hierarchy is induced by the $U(1)_A$ anomaly. This is the main finding of influence of the anomaly on mass spectrum of the pure three-quark SHBs.

Next, as for the pure five-quark SHBs, from \mathcal{L}_{5q} in (6) the mass eigenvalues read [3]

(10)
$$M[\Lambda_c^{[5]}(\pm)] = m_B + \mu_2 + A^2 \mu_4 \pm A f_{\pi} [A(g_2 + g_3) + g_2'] ,$$
$$M[\Xi_c^{[5]}(\pm)] = m_B + \mu_2 + \mu_4 \pm f_{\pi} [A(g_2 + g_3) + g_2'] ,$$

where $\Xi_c^{[5]} \sim csdu\bar{u}\,(csud\bar{d})$ and $\Lambda_c^{[5]} \sim cuds\bar{s}$ and the other notations follow Eq. (8). In this case, the common piece of $h \equiv A(g_2+g_3)+g_2'$ appears in $M[\Lambda_c^{[5]}(\pm)]$ and $M[\Xi_c^{[5]}(\pm)]$, and thus, the anomalous contributions from g_2' effectively disappear for the mass formulas. Therefore, in contrast to the pure three-quark SHBs, for the pure five-quark SHBs the $U(1)_A$ axial anomaly has no influence on the mass spectrum.

4. - Masses in the presence of the three-quark and five-quark SHBs

In this section, we present a typical predictions of the mass spectrum with mixing effects triggered by \mathcal{L}_{mix} in Eq. (7).

When the mixing is present, in general, the mass eigenstates read, e.g.,

$$\begin{pmatrix} \Lambda_c^L(\pm) \\ \Lambda_c^H(\pm) \end{pmatrix} = \begin{pmatrix} \cos\theta_{\Lambda_c(\pm)} & \sin\theta_{\Lambda_c(\pm)} \\ -\sin\theta_{\Lambda_c(\pm)} & \cos\theta_{\Lambda_c(\pm)} \end{pmatrix} \begin{pmatrix} \Lambda_c^{[\mathbf{3}]}(\pm) \\ \Lambda_c^{[\mathbf{5}]}(\pm) \end{pmatrix} ,$$

for Λ_c sector with $\theta_{\Lambda_c(\pm)}$ being a mixing angle. Similar equation follows for Ξ_c sector. The superscript "L/H" represents the eigenstate whose mass is lower/higher, and those mass eigenvalues $M[\Lambda_c^{L/H}(\pm)]$ and $M[\Xi_c^{L/H}(\pm)]$ are evaluated by diagonalizing the corresponding mass matrix from Eqs. (5), (6) and (7). In the following analysis, we will assume the $U(1)_A$ anomaly effect is absent for a transparent demonstration with the mixing: $g_1' = g_2' = \mu_1' = 0$. Hence, there remain seven free parameters to be fixed: μ_1 , μ_2 , μ_3 , μ_4 , g_1 , $h = A(g_2 + g_3)$ and g_4 .

For positive-parity states, denote the ground-state and Roper-like SHBs as Λ_c^L (Ξ_c^L) and Λ_c^H (Ξ_c^H), respectively. Then the following four inputs are employed: $M[\Lambda_c^L(+)] = 2286 \,\mathrm{MeV}$, $M[\Xi_c^L(+)] = 2470 \,\mathrm{MeV}$, $M[\Lambda_c^H(+)] = 2765 \,\mathrm{MeV}$ and $M[\Xi_c^L(+)] = 2967 \,\mathrm{MeV}$. For the negative-parity SHBs, first, we employ a quark-model prediction for $\Lambda_c(-)$ provided in Ref. [4] as another input: $M[\Lambda_c^L(-)] = 2890 \,\mathrm{MeV}$. Next, the experimentally observed $\Xi_c(2930)$ would be regarded as $\Xi_c^L(-)$, hence, the last input can be $M[\Xi_c^L(-)] = 2939 \,\mathrm{MeV}$. Here, we have attached "L" for both the inputs $\Lambda_c(-)$ and $\Xi_c(-)$, since as shown below those states will be found to be the lower mass-eigenvalue states.

From the above six inputs, only one free parameter is left. By fixing this last parameter at which $\theta_{\Xi_c(-)}$ becomes the largest value allowed by the decay width of $\Xi_c(2930)$, one can obtain the mass spectrum in the presence of the mixing as Fig. 1 (b). In this figure the mass values indicated in black and red correspond to the inputs and outputs, respectively. Also, the ratios shown below the mass values represent $Qqq: Qqq\bar{q}q$ for the respective states. Then, from this figure one can see that the ground-state (Roper-like) negative-parity SHBs are dominated by the five-quark (three-quark) components, while the positive-parity SHBs exhibits the opposite tendency by the assumption. One notable prediction is the presence of five-quark dominant $\Lambda_c(-)$ whose mass is 2689 MeV. This SHB decays only through the heavy-quark spin-symmetry breaking processes, and the resultant width reads of order a few MeV. Meanwhile, the three-quark dominant $\Xi_c(-)$ whose mass is 3230 MeV has a catastrophically large decay width. We note that, even when the $U(1)_A$ axial anomaly effects are present, our main prediction of $\Lambda_c(-)$ whose mass is approximately 2700 MeV dose not change as shown in Ref. [3].

5. - Conclusions

In this write-up, we have unveiled effects of the $U(1)_A$ axial anomaly on the threequark and five-quark SHBs based on a chiral model, and presented a prediction of the mass spectrum of those SHBs. The predicted five-quark dominant $\Lambda_c(-)$ whose mass is approximately 2700 MeV is expected to be a useful prove to check our description.

REFERENCES

- $[1] \ \ D. \ \ Suenaga \ \ and \ \ A. \ \ Hosaka, \ \ Phys. \ \ Rev. \ \ D \ \ \textbf{104}, \quad no.3, \quad 034009 \quad (2021) \\ \ \ \ doi:10.1103/PhysRevD.104.034009 \ \ [arXiv:2101.09764 \ [hep-ph]].$
- [2] D. Suenaga and A. Hosaka, Phys. Rev. D 105, no.7, 074036 (2022) doi:10.1103/PhysRevD.105.074036 [arXiv:2202.07804 [hep-ph]].
- [3] H. Takada, D. Suenaga, M. Harada, A. Hosaka and M. Oka, Phys. Rev. D 108, no.5, 054033 (2023) doi:10.1103/PhysRevD.108.054033 [arXiv:2307.15304 [hep-ph]].
- [4] T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Phys. Rev. D 92, no.11, 114029 (2015) doi:10.1103/PhysRevD.92.114029 [arXiv:1510.01067 [hep-ph]].