#### Heavy meson spectroscopy results at LHCb

#### **Tim Gershon** University of Warwick On behalf of the LHCb collaboration

#### Hadron 2023, Genova, Italy 9 June 2023 HADR

N

2023

### Contents

- LHCb basics
- Heavy meson spectroscopy
  - charmonia 🔶
  - charm & charge-strange
  - bottomonia
  - beauty, beauty-strange, beauty-charm
- Outlook and summary

Exotics covered by other speakers ... (I may mention one or two) but many results from same analyses

Many new results ... focus here, touch on others

# The LHCb experiment

- Huge charm and beauty production cross-section in the forward direction in pp collisions at LHC energies
  - Essentially all hadrons produced
- Require superb detection capability to separate signal from potentially overwhelming background
  - LHCb strengths in vertexing, tracking and charged particle identification
  - Capability for online selection (trigger) also crucial
- Two main production mechanisms
  - prompt: highest cross-section, but high backgrounds; only for cleanest channels
  - via B decays: lower rates (cross-section + BF + acceptance), but very clean

Most new results exploit production via B decays



# Prompt vs. B decays

#### example with $\mu^+\mu^-$

#### PRL 120 (2018) 061801

#### EPJ C77 (2017) 161



## Charmonia

- Can be studied in huge range of final states at LHCb
  - leptonic ( $\mu^+\mu^-$  on previous slide)
  - charmless hadrons:  $K^+K^-$ ,  $\phi\phi$ ,  $p\overline{p}$ ,  $K_sK\pi$ , ...
  - charm-anticharm:  $\overline{DD}$ ,  $\overline{D_s}^+\overline{D_s}^-$ ,  $D^{(*)}\overline{D}^{(*)}$ ,  $\Lambda_c^+\overline{\Lambda_c}^-$ , ...
  - lighter charmonia + X: e.g. J/ $\psi\gamma$ , J/ $\psi\pi^+\pi^-$ , J/ $\psi\phi$ , J/ $\psi\eta$ , J/ $\psi\eta'$ , ...
- Decay modes and relative branching fractions provide information on nature of state

New (since Hadron2021) and covered today Not new but recapped today In back-up, please ask if interested

### Charmonia decaying to $K_s K \pi$



#### Charmonia decaying to $K_S K \pi$



arXiv:2304.14891 submitted to PRD

#### Charmonia decaying to $K_S K \pi$ $B^+ \rightarrow K_S K \pi K^+$ arXiv:2304.14891 submitted to PRD

• Improved knowledge of  $\eta_c$  and  $\eta_c(2S)$  resonance parameters

|              | Mass [MeV]                  | Width $[MeV]$             |
|--------------|-----------------------------|---------------------------|
| $\eta_c$     | $2985.01 \pm 0.17 \pm 0.89$ | $29.7\pm0.5\pm0.2$        |
| $\eta_c(2S)$ | $3637.90 \pm 0.54 \pm 1.40$ | $10.77 \pm 1.62 \pm 1.08$ |
| $\chi_{c1}$  | $3509.84 \pm 0.69 \pm 0.64$ | [fixed]                   |

- Dalitz plot analyses of  $\eta_c$  and  $\eta_c(2S) \rightarrow K_s K \pi$  decays provide information on kaon spectroscopy (K $\pi$  S-wave)
  - Study of  $\chi_{c1} \rightarrow K_{S} K \pi$  decays also performed

## Charmonia decaying to D<sup>+</sup>D<sup>-</sup>

 $B^+ \to D^+ D^- K^+$ 



Signal yield of  $1303 \pm 37$  (highly pure as optimised for amplitude analysis)

Unexpected exotic components observed, but also interesting  $D^+D^-$  structures  $_{10}$ 

PR D102 (2020) 112003

## Charmonia decaying to D<sup>+</sup>D<sup>-</sup>

Structure around 3930 MeV seen in  $D\overline{D}$  and J/ $\psi\omega$  previously assumed to be J<sup>P</sup> = 2<sup>+</sup> state, i.e.  $\chi_{c2}(2P)$ 

LHCb analysis shows there to be two states in that region, with  $J^{P} = 0^{+}$  and  $2^{+}$ 

| Resonance         | Mass (GeV/ $c^2$ )             | Width (MeV)            |
|-------------------|--------------------------------|------------------------|
| $\chi_{c0}(3930)$ | $3.9238 \pm 0.0015 \pm 0.0004$ | $17.4 \pm 5.1 \pm 0.8$ |
| $\chi_{c2}(3930)$ | $3.9268 \pm 0.0024 \pm 0.0008$ | $34.2 \pm 6.6 \pm 1.1$ |



#### PR D102 (2020) 112003



### Charmonia decaying to $D_s^+D_s^-$

arXiv:2211.05034 to appear in PRD

 $B^+ \rightarrow D_s^+ D_s^- K^+$ 

arXiv:2210.15153 to appear in PRL



LHCb Data 9 fb<sup>-1</sup> Total fit X(3960)  $X_0(4140)$  $\psi(4260)$  $\psi(4660)$ Nonresonant  $D_s^+ D_s^-$ 2010 4.0 4.24.4 4.6 4.8 $m(D_s^+D_s^-)$  [GeV]

Striking low-mass enhancement + interference dip near J/ $\psi \phi$  threshold 12 [modelled here with interfering spin-0 resonances]

### Charmonia decaying to $D_s^+D_s^-$

arXiv:2211.05034 to appear in PRD

 $B^+ \rightarrow D_s^+ D_s^- K^+$ 

arXiv:2210.15153 to appear in PRL



LHCb Data 9 fb<sup>-1</sup> Total fit *K*-matrix  $\psi(4260)$  $\psi(4660)$ 4.0 4.2 4.4 4.6 4.8  $m(D_s^+D_s^-)$  [GeV]

Striking low-mass enhancement + interference dip near J/ψφ threshold 13 [modelled here with K matrix]

#### Reminder: states in $J/\psi\phi$



No sign (yet) of X(4500) or X(4700) in  $D_s^+D_s^-$  final state No  $J^P = 0^+$  state near threshold in  $J/\psi\phi$ 

## Charmonia decaying to $J/\psi\eta$







Clear need for  $\omega$  contribution, and interference, to fit m( $\pi^+\pi^-$ ) spectrum  $_{17}$ 

Signal yield of 6788 ± 117



## Charmonia summary

- Much new information on charmonia from LHCb
  - especially exploiting production in B decays
- Several important channels still missing
  - much work is in progress!
- Larger samples needed to obtain complete picture of resonances in different final states
  - e.g.  $D^{(*)}\overline{D}^{(*)}$  ↔  $D_s^{(*)+}D_s^{(*)-}$ , J/ψφ ↔  $D_s^{(*)+}D_s^{(*)-}$
- With much larger samples, possible to exploit production in  $B_c$  decays
  - extend kinematic limit from [m(B)-m(K)] ~ 4.8 GeV to [m(B<sub>c</sub>)-m( $\pi$ )] ~ 6.1 GeV

## Charm & charm-strange mesons

 Production in B decay provides great opportunities for charm(-strange) meson spectroscopy

$$- B^+ \rightarrow D^- \pi^+ \pi^+, B^+ \rightarrow D^{*-} \pi^+ \pi^+$$

$$- B^0 \rightarrow \overline{D}{}^0\pi^-\pi^+$$

$$- B_s{}^0 \rightarrow \overline{D}{}^0K^-\pi^+$$

PR D94 (2016) 072001; PR D101 (2020) 032005

PR D92 (2015) 032002

PRL 113 (2014) 162001; PR D90 (2014) 072003

- Modes with neutral pions are harder but not impossible!
  - $\neg \overline{D}^{*0} \rightarrow \overline{D}^{0} \pi^{0}, \ \overline{D}^{0} \gamma$

Studies also in  $B \rightarrow D\overline{D}h(h)$  decays e.g.  $D_{s0}(2590)^+$  seen in  $B^0 \rightarrow D^+D^-K^+\pi^-$ PRL 126 (2021) 122002

# $B_{(s)}^{0} \rightarrow \overline{D}^{*0}h^{+}h'^{-}$







First inspection of the Dalitz plots

Clear structures from (left and right)  $D_1(2420)^-$ , (middle)  $D_{s1}(2536)^-$ 

# Observation of $B_{(s)}^{0} \rightarrow D_{s1}(2536)^{\mp}K^{\pm}$



#### LHCb-PAPER-2023-014 in preparation

Partial reconstruction technique (soft neutral particles from D\*<sup>0</sup> decay not included in reconstructed final state) Effective for narrow resonances

Spin structure imprinted on invariant mass distributions

# Observation of $B_{(s)}^{0} \rightarrow D_{s1}(2536)^{\mp}K^{\pm}$



# Beauty & beauty-strange mesons

 Studies of prompt production background dominated





Two peaks observed but do they originate from decays to BK or B\*K?

<sup>-</sup> e.g. BK spectrum

# $B_c \rightarrow B_{(s)}$

arXiv:2210.12000 to appear in JHEP

- However, samples approaching size where  $B_c$  decays can be used to study  $B_{(s)}$  spectroscopy
  - will open many possibilities ...



 $B_c^+ \rightarrow B_s^0 \pi^+$  previously observed in PRL 111 (2013) 181801 and used for  $B_c^+$  mass measurement in JHEP 07 (2020) 123

## The LHCb detector



# The LHCb detector

Use timing to reduce combinatorial background Improve detection capability wherever possible **Higher instantaneous** luminosity → more data



# Summary

- LHCb's unique data sample providing novel insights into heavy meson spectroscopy
  - including many results on exotics, not covered in this talk
- Plenty more to come with existing data
  - ... and Run 3 will provide increased yields with an upgraded detector
- Intriguing possibilities for improved understanding with larger samples
  - exploiting production in  $B_{\rm c}$  decays
  - connecting signatures seen in different final states
- LHCb Upgrade 2 will be the ultimate LHC flavour physics experiment
  - two orders of magnitude more data compared to data

#### Back it up

# Charmonia decaying to $\Lambda_c^+\overline{\Lambda}_c^-$ ?



Signal yield of  $1365 \pm 42$ 

No clear structure [2900 < m( $\overline{\Lambda}_c$ -K<sup>+</sup>) < 2970 MeV veto applied] 31

# Charmonia decaying to $J/\psi\eta'$ ?

 $B^+ \rightarrow J/\psi \eta' K^+$ 

#### arXiv:2303.09443 to appear in JHEP

400 $\frac{1}{\text{GeV}/c^2}$ (a LHCb (b)LHCb  $Candidates / (1.5 MeV/c^2)$ 62) LHCb LHCb Data 70 Data  $9\,\mathrm{fb}^{-1}$  $9\,\mathrm{fb}^{-1}$ Data 3 MeV/  $B^+ \to J/\psi \eta' K^+$  $9 \, {\rm fb}^{-1}$  $B^+ \rightarrow J/\psi n' K^+$  $9 \, {\rm fb}^{-1}$ 300 Phase space Background Background **Fota**  $\eta' \to \rho^0 \gamma$ Total  $\eta' \rightarrow \eta \pi^+ \pi^-$ 200 andidates 30 100 20 1.57 1.74 2.08 2.25 4.9 Ĩ4 1.91 4.1 4.3 4.5 4.7  $\left[ \text{GeV}/c^2 \right]$  $\left[ \text{GeV}/c^2 \right]$  $m_{\eta'K^+}$  $m_{J/\psi\eta'}$  $\begin{bmatrix} -1 \\ 5.35 \\ [GeV/c^2] \end{bmatrix}$ 5.2 5.25 5.3 5.35 5.2 5.25 5.3 m LHCb $9\,{
m fb}^{-1}$  $\frac{1}{\text{GeV}/c^2}$ LHC  $\left[\text{GeV}/c^2\right]$  $\left[ \text{GeV}/c^2 \right]$  $m_{J/\psi n'K^+}$ m. 1/1/10/12+ 2.08  $9 \, \text{fb}$ 1.91

 $\frac{\mathrm{d}N}{\mathrm{d}m}$ 

3.5

3.8

4.1

 $m_{J/\psi K^+}$ 

 $\left[ \text{GeV}/c^2 \right]$ 

 $m_{\eta'}K^+$ 1.74

1.57

4.2

4.4

 $m_{J/\psi n}$ 

#### Signal yields of

- 1110 ± 110  $[\eta' \rightarrow \rho \gamma]$
- 228 ± 28 [ $\eta' \rightarrow \eta \pi^+ \pi^-$ ] No clear charmonium structures

 $\begin{bmatrix} 6 & 4.8 \\ GeV/c^2 \end{bmatrix}$ 

4.6

# LHCb Run 1+2 integrated luminosity



Unprecedented samples of charm and beauty Dependence of production rate on  $\sqrt{s}$  means (for LHCb) 2015+16  $\approx$  2 x Run 1 (2011+12); 2017+18  $\approx$  2 x 2011–16

### **HL-LHC** schedule







Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

Last update: April 2023