Double-Strangeness Molecular-Type Pentaquarks from Coupled-Channel Dynamics

Àngels Ramos

University of Barcelona and ICCUB

Based on: J.A. Marsé-Valera, V.K. Magas, A. R., *Phys. Rev. Lett.* 130 (2023) 9

- Introduction to exotic hadrons
- Pentaquarks within a molecular picture
- Model: unitarized t-channel vector exchange interaction: → is there an S=-2 pentaquark?
- Results
- Summary

Exotic hadrons

(anything that goes beyond $q\overline{q}$ and qqq)

Mesons

compact tetraquark

meson-meson molecule

Glueball

hybrid

Baryons

compact pentaquark

baryon-meson molecule

HADRON2023, June 5-9, Genova

3

In spite of the success of the conventional quark model, there are many (excited) hadrons that **do not accommodate** to the $q\overline{q}$ or qqq description:

Mesons $f_0(500)$ $a_0(980)$ $f_0(980)$ $f_1(1420)$

Baryons

N(1440)

N(1535)

A(1405)

A(1670)

 $I^{G}(J^{PC})$ $\stackrel{0^{+}(0^{++})}{1^{-}(0^{++})} \rightarrow \text{the same orbital excitation} \\ (\text{only different isospin}): (u\overline{u} \pm d\overline{d})/\sqrt{2} \\ \stackrel{0^{+}(0^{++})}{0^{+}(0^{++})} \rightarrow s\overline{s}$

 $I^{G}(J^{P})$ $1/2^{+} \rightarrow radial \text{ excitation (too low exp. mass)}$ $1/2^{-} \rightarrow orbital \text{ excitation (too high exp. mass)}$ $1/2^{-} \rightarrow orbital \text{ excitation (too low exp. mass)}$ $1/2^{-}$

• Nature gives clues to whether a particular hadron may have an exotic multiquark configuration structure

 $\begin{array}{c} f_0(500) & \rightarrow \text{ appears naturally from chiral } \pi\pi \text{ interations} \\ a_0(980) \\ f_0(980) \end{array} \right\} \rightarrow \text{very close to the } K\overline{K} \text{ threshold}$

 $\Lambda(1405) \rightarrow$ very close to the $\overline{K}N$ threshold

A lot of activity for more than 40 years! ...
 ...but disentangling the true nature of a particular hadron is not easy due to the mixing of *conventional* and *exotic* components.

Since the beginning of the millenium, an increasing amount of data in the charm (hidden charm) sector (collected at Belle, BaBar, LHCb and BESIII...), has provided cleaner evidence for many new **exotic** states which appear to be inconsistent with the predictions of the conventional quark model.

Hidden charm ($c\overline{c}$) but charged (need additional $q\overline{q}$ pair: $u\overline{d}$, $u\overline{s}$)

HADRON2023, June 5-9, Genova

6

Exotic MESONS (open charm)

LHCb 2021

Simulation

Charm-strange state (*cs*): X_{cs}(2900)

 $D^*\overline{K}^*$ molecule? Molina, Branz, Oset (2010)

Double-charm (*cc*): T_{cc}(2900) $D^{*+}D^{0}$

 $\Lambda_b \to J/\psi \ p \ K^-$

S=0 $(c\bar{c}qqq)$ q = u, d P_c (or P_{ψ}^N)

8

• The flavor content of the $P_c(4310)$, $P_c(4440)$, $P_c(4457)$ states is not exotic (uud) but the high mass and the observation from J/ψ p pairs makes them to be unambiguous pentaquark candidates (ccuud).

In fact, these states find a natural explanation as baryon-meson molecules:

 $\overline{D}{}^{0}\Sigma_{c}^{+}$ threshold: 4318 MeV \rightarrow P_c(4312)

 $\overline{D}^{*0}\Sigma_c^+$ threshold: : 4460 MeV (J=1/2, 3/2) $\rightarrow P_c$ (4440), P_c(4457)

and were already predicted in 2010!

J.J.Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105, 232001 (2010); Phys. Rev. C 84, 015202 (2011).

This work also predicted S=-1 states at 4209 MeV ($\overline{D}\Xi_c$), 4394 MeV ($\overline{D}\Xi'_c$) 4368 MeV ($\overline{D}^*\Xi_c$), 4544 MeV ($\overline{D}^*\Xi'_c$)

S=-1 $(c\bar{c}qqs)$ q = u, d P_{cs} (or $P_{\psi s}^{\Lambda}$)

$$B^- o J/\psi \Lambda ar p$$

 $\Xi_{b}^{-}
ightarrow J/\psi \Lambda K^{-}$

LHCb, Sci. Bull. 66 (2021) 1278

S=-2 pentaquarks? P_{css} (or $P_{\psi ss}^{\Xi}$)

Unitarized t-channel vector-meson exchange interaction

Interaction kernel:

 $S = -2, I = \frac{1}{2}$

$$V_{ij}(\sqrt{s}) = -\frac{C_{ij}}{4f^2} \left(2\sqrt{s} - M_i - M_j\right) \sqrt{\frac{E_i + M_i}{2M_i}} \sqrt{\frac{E_j + M_j}{2M_j}}$$

		$\pi \Xi$	$ar{K}\Lambda$	$ar{K}\Sigma$	$\eta \Xi$	$\eta' \Xi$	$\eta_c \Xi$	$ar{D}_s \Xi_c$	$\bar{D}_s \Xi_c'$	$\bar{D}\Omega_c$
sector	$\pi \Xi(1456)$	2	$\frac{3}{2}$	$\frac{1}{2}$	0	0	0	0	0	$\sqrt{\frac{3}{2}}\kappa_c$
	$ar{K}\Lambda(1611)$		0	0	$-\frac{3}{2}$	0	0	$-rac{1}{2}\kappa_c$	$-\frac{\sqrt{3}}{2}\kappa_c$	0
	$\bar{K}\Sigma(1689)$			2	$\frac{3}{2}$	0	0	$\frac{3}{2}\kappa_c$	$-rac{\sqrt{3}}{2}\kappa_c$	0
light	$\eta \Xi(1866)$				0	0	0	κ_c	$\frac{1}{\sqrt{3}}\kappa_c$	$\frac{1}{\sqrt{6}}\kappa_c$
	$\eta' \Xi(2276)$					0	0	$rac{1}{\sqrt{8}}\kappa_c$	$-\frac{1}{\sqrt{6}}\kappa_c$	$\frac{1}{\sqrt{3}}\kappa_c$
heavy sector	$\eta_c \Xi(4302)$						0	$\sqrt{\frac{3}{2}}\kappa_c$	$\frac{1}{\sqrt{2}}\kappa_c$	$-\kappa_c$
	$\bar{D}_s \Xi_c(4437)$							$-1 + \kappa_{cc}$	0	0
	$\bar{D}_s \Xi_c'(4545)$								$-1 + \kappa_{cc}$	$-\sqrt{2}$
	$\bar{D}\Omega_c(4565)$									κ_{cc}

 $\kappa_c = \frac{m_\rho^2}{m_{D^*}^2} \sim \frac{1}{4}$ $\kappa_{cc}=rac{m_
ho^2}{m_{J/\psi}^2}\simrac{1}{9}$

Light and heavy sectors are practically "decoupled"

Unitarization: Bethe-Salpeter equation with on-shell factorization

$$\begin{split} \sum_{p_{i}}^{k_{i}} \sum_{p_{i}}^{k_{i}} &= \sum_{p_{i}}^{k_{i}} + \sum_{$$

Results: heavy PB sector

$$J^{\pi} = \frac{1}{2}$$

$0^- \oplus 1/2^+ PB$ interaction in the $(I, S) = (1/2, -2)$ sector						
$P_{\Psi ss}^{\Xi}(4493$		$M_R = 4493.35 \text{ MeV}$	$\Gamma_R = 73.67 \text{ MeV}$			
	Threshold Energy (MeV)	g_i	$ g_i $	Xi		
$\eta_c \Xi$ $ar{D}_s \Xi_c$ $ar{D}_s \Xi_c'$ $ar{D} \Omega_c$	4298 4437 4545 4564	-1.60 + i0.34 -0.17 + i0.27 -2.41 + i0.58 3.59 - i0.77	1.63 0.32 2.48 3.67	0.220 0.019 0.398 0.711		

We find a $P_{\psi ss}^{\Xi}$ state around **4500 Me**V and width of 70 MeV, coupling strongly to $\overline{D}_s \Xi'_c$ and $\overline{D}\Omega_c$

J.A. Marsé-Valera, V.K. Magas, A. Ramos, *Phys. Rev. Lett.* 130 (2023) 9

Was a meson-baryon molecule expected in this $(S = -2, I = \frac{1}{2})$ sector?

 $[\]rightarrow$ two states

$$\kappa_{c} = \frac{m_{\rho}^{2}}{m_{D^{*}}^{2}} \sim \frac{1}{4}$$

$$\kappa_{cc} = \frac{m_{\rho}^{2}}{m_{J/\psi}^{2}} \sim \frac{1}{9}$$

$$\begin{array}{c} S = -2, I = 1/2 \\ \hline \eta_{c} \Xi & \bar{D}_{s} \Xi_{c} & \bar{D}_{s} \Xi_{c} & \bar{D}\Omega_{c} \\ \hline \eta_{c} \Xi & 0 & \sqrt{\frac{3}{2}}\kappa_{c} & \frac{1}{\sqrt{2}}\kappa_{c} & -\kappa_{c} \\ \hline \bar{D}_{s} \Xi_{c} & -1 + \kappa_{cc} & 0 & 0 \\ \hline \bar{D}_{s} \Xi_{c}' & -1 + \kappa_{cc} & -\sqrt{2} \\ \hline D\Omega_{c} & \kappa_{cc} \end{array} \rightarrow \text{no state expected}$$

$$\begin{array}{c} \text{but...} \\ \text{but...} \\ \text{strong coupled} \\ \text{channel effect!} \\ \Rightarrow \text{induces attraction} \end{array}$$

ICCUB 16

Coupled-channel effect

The resonance is not generated in the coupling coefficient is reduced by 30%.

This state is generated in a very specific and unique mechanism: \rightarrow via an attraction induced by a strong coupling between the $D_s \Xi'_c$ and $D\Omega_c$ channels

Parameter dependence: cut-off Λ , SU(4) breaking

Even changing the parameters of the model, the prediction of this resonance is robust

Comparison with other works (unitarized vector-meson exchange)

J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 763 (2005) 90

J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84 (2011) 015202

	$\eta_c \Xi$	$\bar{D}_s \Xi_c$	$\bar{D}_s \Xi_c'$	$ar{D}\Omega_c$
$\eta_c \Xi$	0	$\sqrt{rac{3}{2}}\kappa_c$	$rac{1}{\sqrt{2}}\kappa_c$	$-\kappa_c$
$\bar{D}_s \Xi_c$		$-1 + \kappa_{cc}$	0	0
$\bar{D}_s \Xi_c'$			$-1 + r_{vcc}$	$-\sqrt{2}$
$\bar{D}\Omega_c$				ĸcc

$$\kappa_{cc} = rac{m_{J/\psi}^2}{m_
ho^2} \sim rac{1}{9} \
ot > 0$$

→ a state around 3800 MeV is found Very different regularization approach! (it amounts to $\Lambda_{cut} \sim 2800$ MeV)

Dimensional regularization scheme

→ generates a *fake* pole at a lower energy, "hiding" the real signature

Results: heavy VB sector

$$J^{\pi} = \frac{1}{2}^{-}, \ \frac{3}{2}^{-}$$

	$1^- \oplus 1/2^+$ VB interaction in the $(I, S) = (1/2, -2)$ sector						
	$P_{\Psi ss}^{\Xi}(4633)$		$M_R = 4633.38$ MeV	$V \Gamma_R = 79$	$\Gamma_R = 79.58 \text{ MeV}$		
		Threshold Energy (MeV)	g	$ g_i $	Χi		
	$egin{aligned} ar{J/\psi}\Xi\ ar{D}_s^*\Xi_c\ ar{D}_s^*\Xi_c' \end{aligned}$	4415 4581 4689	-1.62 + i0.38 -0.143 + i0.32 -2.49 + i0.67	1.66 0.34 2.58	0.252 0.022 0.406		
	$ar{D}^*\Omega_c$	4706	3.67 + i0.89	3.78	0.740		
q1[Ti1] ² [MeV ⁻¹]	$16^{J/\psi \equiv}$ $14 \overline{D}^{*}_{s} \equiv_{c} \rightarrow J/\psi \equiv$ $14 \overline{D}^{*}_{s} \equiv_{c} \rightarrow J/\psi \equiv$ $\overline{D}^{*}_{s} \subseteq_{c} \rightarrow J/\psi \equiv$ $12 \overline{D}^{*}_{s} \Omega_{c} \rightarrow J/\psi \equiv$ $10 \overline{D}^{*}_{s} \Omega_{c} \rightarrow J/\psi $		Ď*s≡c , , , , , , , , , , , , , , , , , , ,		$\frac{1}{E_b}$		

We find a $P_{\psi ss}^{\Xi}$ state around **4630 MeV** and width of 80 MeV, coupling strongly to $\overline{D}_{s}^{*}\Xi_{c}'$ and $\overline{D}^{*}\Omega_{c}$

It could be seen as a peak in the invariant mass spectrum of $J/\psi \Xi$ pairs produced in the decays: $\Xi_b \rightarrow J/\psi \Xi \phi$ or $\Omega_b \rightarrow J/\psi \Xi \overline{K}$

S ICCUB

20

The t-channel vector-exchange formalism predicts pentaquarks with S=-2: $P_{\psi ss}^{\Xi}$

Long range open-pion-exchange (alternative molecular picture) is forbidden!

Channels:

 $\eta_c \Xi \quad \bar{D}_s \Xi_c \quad \bar{D}_s \Xi_c' \quad \bar{D} \Omega_c$

Channels: $J/\psi \equiv \bar{D}_s^* \Xi_c \qquad \bar{D}_s^* \Xi_c' \qquad \bar{D}^* \Omega_c$

These transitions cannot proceed via OPE because they involve either an isoscalar meson or baryon

→ If $P_{\psi ss}^{\Xi}$ are discovered, this would strengthen the validity of unitary t-channel vector-exchange models for meson-baryon molecules

$\Xi_b \to J/\psi \ \phi \ \Xi$

(Similar to the proces $\ \Lambda_b o J/\psi \ \phi \ \Lambda$)

Magas, Ramos, Somasundaram, Phys.Rev.D 102 (2020) 054027

(inspired on $B^+ \rightarrow J/\psi \ \phi \ K^+$)

Wang, Xie, Geng, Oset, Phys.Rev.D 97 (2018) 014017

$J/\psi \Xi$ invariant mass distribution

Production via a wide X(4140)

Production via a *narrow* X(4140) + X(4160)

HADRON2023, June 5-9, Genova

ICCUB 25

Sensitivity to M and to coupling $g(P_{\psi ss}^{\Xi} \rightarrow J/\psi \Xi)$

Summary

Stimulated by the recent discoveries by the LHCb of hidden-charm pentaquark states with strangeness S=0 and S=-1, we have revisited the vector-meson exchange interaction models to study the possible existence of pentaquarks with strangeness S=-2

Employing realistic regularization parameters, we predict S=-2 pentaquarks of molecular nature around 4500 and 4600 MeV

These $P_{\psi ss}^{\Xi}$ states are generated in a very specific and unique way: \rightarrow via an **attraction induced** by a **strong coupling between** the two heaviest MB **channels**

The absence in this sector of a long-range OPE mechanism makes the search of $P_{\psi ss}^{\Xi}$ especially interesting

→ if found, their interpretation as **molecules** would require a change of paradigm, since they **could be only bound through heavier-meson exchange** mechanisms.

Thank you for your attention

