

New results on conventional heavy baryon spectroscopy from LHCb

Zhihao Xu (on behalf of the LHCb collaboration)

Hadron 2023 June 5 to 9, 2023

2

Motivation - II

- What can we do?
- Searching for new decays.
- Expanding known decays.
- Mass, width (lifetime);
- Production;
- Branching ratio;
- Quantum numbers (*I^GJ^{PC}*).

patrick.koppenburg@cern.ch 2023-02-10

LHCb experiment - I

- $\sigma_{\mathrm{IP}} = 20 \ \mathrm{\mu m}$ $\sigma_{\tau} = 45 \ \mathrm{fs}$
- $\sigma_p / p \sim 0.5\% 1.0\%$ $\sigma_E / E = \frac{10\%}{\sqrt{E}} \pm 1\%$

 $\epsilon(K \to K) \sim 95\%$ Mis-ID $\epsilon(\pi \to K) \sim 5\%$

LHCb designed for study charmed and beauty hadron.
 Excellent vertex, tracking and PID performance.

LHCb experiment - II

• LHCb collected the largest samples of reconstructed heavy hadrons during LHC Run 1 and Run 2.

5

Excited Ω_c^0 states - I

- Starting of the story...
- In 2017, LHCb observed five new excited Ω_c^0 in $m(\Xi_c^+K^-)$.
- Four of them confirmed by Belle.

2018 Belle result PHYS. REV. D 97 (2018) 5, 051102

Zhihao Xu(UCAS) @HADRON2023

New excited Ω_c^0 states -

- New states observed: $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$
- All previous states confirmed, and masses and widths measured with the highest precision.

as systematics

- Detailed study of the threshold enhancement.
- Detailed study of the $\Omega_c(3185)^0$ with alternative model. \checkmark

New New excited Ω_c^0 states - II

4

12

10

8

6

3000

3100

3200

Candidates / (5 MeV)

3300

- Three $m(\Xi_c^+K^-)$ studies from LHCb...
- And one $m(\Xi_c^+K^-)$ study from Belle...
- What happens on $\Omega_c(3119)^0$?

Candidates / (1 MeV)

400

300

200

100

3000

3100

What exactly happens on threshold?

LHCb

 $\Omega_{c}(3119)^{0}$

3200

 $m(\Xi_c^+ K^-)$ [MeV]

PHYS. REV. LETT. 118 (2017) 182001

3300

 $\Omega_{c}(3119)^{0}$

Excited Ξ_c^0 states - I

PHYS. REV. LETT. 124 (2020) 222001

- Three excited Ξ_c^0 were observed in prompt $m(\Lambda_c^+K^-)$.
- Using LHCb 2016-2018 data, at 13 TeV and 5.4 $\rm fb^{-1}.$

Excited Ξ_c^0 states - II

ARXIV: 2211.00812

- $B^- \rightarrow \Lambda_c^+ \Lambda_c^- K^-$ decay is studied.
- Confirmed $\mathcal{Z}_c(2923)^0$ and $\mathcal{Z}_c(2939)^0$, consistent with prompt result.
- Evidence of $\mathcal{Z}_c(2880)^0 \rightarrow \Lambda_c^+ K^-$ observed (3.8 σ).
- No structure on $m(\Lambda_c^+\Lambda_c^-)$ and $m(\Lambda_c^-K^-)$

Excited Ξ_b^- states

PHYS. REV. LETT. 126, 252003

- $\Xi_b(6100)^-$ observed by CMS in $m(\Xi_b^-\pi^+\pi^-)$
- Two channels used to reconstruct Ξ_b^-

$$\begin{split} m(\mathcal{Z}_b(6100)^-) &= 6100 \pm 0.2(\text{stat.}) \pm 0.1(\text{syst}) \pm 0.6~(\mathcal{Z}_b^-)~\text{MeV} \\ \Gamma(\mathcal{Z}_b(6100)^-) &< 1.9~\text{MeV}, \text{C. L.}~95\% \end{split}$$

13

New excited Ξ_b^0 states

LHCB-PAPER-2023-008 (IN PREPARATION)

- Observation of two new excited Ξ_b^0 baryons: $\Xi_b(6087)^0$, $\Xi_b(6095)^0$.
- One state is confirmed: $\underline{z}_{b}(6100)^{-}$.
- First observation of $\Xi_b^0 \rightarrow \Xi_c^+ \pi \pi \pi$
- Best measurement on known $\Xi_b^{\prime-}$ and Ξ_b^{*-} states.

 $Q_0(\Xi_b^0(6087))$

 $\Gamma \ (\Xi_{b}^{0}(6087))$

 $\Gamma \ (\Xi_{b}^{0}(6095))$

 $16.20 \pm 0.20 \pm 0.06$

 $m_0 \left(\Xi_b^0(6087) \right) = 6087.24 \pm 0.20 \pm 0.06 \pm 0.5 \ (\Xi_b^0)$

 $Q_0 \left(\Xi_b^0(6095) \right) = 24.32 \pm 0.15 \pm 0.03$

 $2.43 \pm 0.51 \pm 0.10$

 $0.50 \pm 0.33 \pm 0.11$

JHEP 05 (2022) 038

 $E_{cc}^{++} \rightarrow E_c^{\prime+} \pi^+$

- $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+}\pi^{+}$ observed with LHCb run-2 data.
- $\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{\prime+}\pi^{+}$ is reconstructed partially. $\mathcal{B}(\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{\prime+}\pi^{+})$

 $\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})} = 1.41 \pm 0.17 \pm 0.10$

$$\Xi_{bc}^+ \to J/\psi \,\Xi_c^+$$

ARXIV:2204.09541

- First search for $\Xi_{bc}^+ \to J/\psi \ \Xi_c^+$, with 9 fb⁻¹.
- Two peaking structures seen
 - Mass: 6571 MeV. Local (global) significance: 4.3(2.8) σ
 - Mass: 6694 MeV. Local (global) significance: 4.1(2.4) σ

ARXIV:2204.09541

$$\mathcal{R} = \frac{\sigma(\mathcal{Z}_{bc}^+) \times \mathcal{B}(\mathcal{Z}_{bc}^+ \to J/\psi \, \mathcal{Z}_c^+) \times \mathcal{B}(\mathcal{Z}_c^+ \to pK^-\pi^+)}{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi \, D_s^+) \times \mathcal{B}(D_s^+ \to K^+K^-\pi^+)}$$

Zhihao Xu(UCAS) @HADRON2023

Summary

Heavy baryons

- Observation of excited Ξ_c^0 baryons
- Observation of excited Ξ_b^- baryons
- Observation of excited Ω_c^0 baryons (recent)
- Observation of excited Ξ_b^0 baryons (recent)
- Double Heavy baryons
 - Measurement of $\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})}$
 - First search for $\Xi_{bc}^+ \to J/\psi \Xi_c^+$

Future

Higher luminosity
Better detector
Improved techniques
.....

More particles...
More decays...
Higher precision...

≻Fulfill hadron picture

Thanks!