Effective field theories for neutrinoless double-beta decay

Javier Menéndez

University of Barcelona Institute of Cosmos Sciences

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) 9th June 2023

Creation of matter in nuclei: $0\nu\beta\beta$ decay

Lepton number is conserved in all processes observed:

single β decay, $\beta\beta$ decay with ν emission... Neutral massive particles (Majorana ν 's) allow lepton number violation:

neutrinoless $\beta\beta$ decay creates two matter particles (electrons)

Agostini, Benato, Detwiler, JM, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

$\beta\beta$ decay

Second order process in the weak interaction

Only observable in nuclei where (much faster) β -decay is forbidden energetically due to nuclear pairing interaction

$$BE(A) = -a_vA + a_sA^{2/3} + a_c\frac{Z(Z-1)}{A^{1/3}} + \frac{(A-2Z)^2}{A} + \begin{cases} -\delta_{\text{pairing}} & \text{N,Z even} \\ 0 & \text{A odd} \\ \delta_{\text{pairing}} & \text{N,Z odd} \end{cases}$$

or where β -decay is very suppressed by ΔJ angular momentum change

Nuclear matrix elements for new-physics searches

Neutrinos, dark matter studied in experiments using nuclei

Nuclear structure physics encoded in nuclear matrix elements key to plan, fully exploit experiments

$$\begin{split} &0\nu\beta\beta: \left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} \propto g_A^4 \left| M^{0\nu\beta\beta} \right|^2 m_{\beta\beta}^2 \\ &\text{Dark matter: } \frac{\mathrm{d}\sigma_{\chi\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \\ &\text{CE}\nu\mathrm{NS: } \frac{\mathrm{d}\sigma_{\nu\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \end{split}$$

 $M^{0\nu\beta\beta}$: Nuclear matrix element \mathcal{F}_i : Nuclear structure factor

Different scales in $0\nu\beta\beta$ decay

New physics scale: $\Lambda \gg 250 \text{ GeV}$

Electroweak scale: $v = \left(\sqrt{2}G_F\right)^{-1/2} \sim 250 \text{ GeV}$

QCD (hadron) scale: $m_N \sim \text{GeV}$

Nuclear scale: $k_F \sim m_\pi \sim 200 \text{ MeV}$

$0\nu\beta\beta$ decay half-life

Half-life of $0\nu\beta\beta$ decay sensitive to $m_{\beta\beta} \sim 1/\Lambda$ (dim-5 operator), new-physics scales $\widetilde{\Lambda}$ (dim-7) or $\widetilde{\Lambda}'$ (dim-9)

$$\mathcal{T}_{1/2}^{-1} = G_{01} g_A^4 \left(M_{\text{light}}^{0\nu} \right)^2 m_{\beta\beta}^2 + m_N^2 \tilde{G} \, \tilde{g}^4 \, \tilde{M}^2 \left(\frac{v}{\tilde{\lambda}} \right)^6 + \frac{m_N^4}{v^2} \tilde{G}' \, \tilde{g}'^4 \, \tilde{M}'^2 \left(\frac{v}{\tilde{\lambda}'} \right)^{10}$$

 $G_{01}, \widetilde{G}, \widetilde{G}'$: phase-space factors (electrons), very well known $g_A, g_{\nu}^{NN}, \widetilde{g}, \widetilde{g}'$: coupling to hadron(s), experiment or calculate with QCD $M_{long}^{0\nu}, M_{short}^{0\nu}, \widetilde{M}, \widetilde{M}'$: nuclear matrix elements, many-body challenge

Next generation experiments: inverted hierarchy

Decay rate sensitive to neutrino masses, hierarchy $m_{\beta\beta} = |\sum U_{ek}^2 m_k|$

$$T_{1/2}^{0
uetaeta}\left(0^+
ightarrow 0^+
ight)^{-1}=G_{0
u}\,g_A^4\left|M_{ ext{light}}^{0
u}
ight|^2\left(rac{m_{etaeta}}{m_{e}}
ight)^2$$

Matrix elements assess if next generation experiments fully₃ explore "inverted hierarchy"

KamLAND-Zen, PRL117 082503(2016)

Uncertainty in physics reach of $0\nu\beta\beta$ experiments

Agostini, Benato, Detwiler, JM, Vissani Phys. Rev. C 104 L042501 (2021) 8/23 Nuclear matrix element theoretical uncertainty critical to anticipate $m_{\beta\beta}$ sensitivity of future experiments

Current uncertainty in $m_{\beta\beta}$ prevents to foresee if next-generation experiments will fully cover parameter space of "inverted" neutrino mass hierarchy

Uncertainty needs to be reduced!

$0\nu\beta\beta$ mediated by new-physics heavy particles

Stantard Model extensions trigger $0\nu\beta\beta$ decay (heavy ν , M_R ...) Phase-space, hadronic/nuclear matrix elements, known or calculated

Effective field theory

Cirigliano et al JHEP 12 097 (2018) dimension-7 (\sim 1/ Λ^3), dimension-9 (\sim 1/ Λ^5) operators constrained by current searches $\Lambda \gtrsim 250$ TeV (dim-7) $\Lambda \gtrsim 5$ TeV (dim-9)

Nuclear matrix elements

Nuclear matrix elements needed in low-energy new-physics searches

$$raket$$
 Final $|\mathcal{L}_{ ext{leptons-nucleons}}|$ Initial $angle=raket$ Final $|\int dx\, j^\mu(x) J_\mu(x)|$ Initial $angle$

- Nuclear structure calculation of the initial and final states: Shell model, QRPA, IBM, Energy-density functional Ab initio many-body theory QMC, Coupled-cluster, IMSRG...
- Lepton-nucleus interaction: Hadronic current in nucleus: phenomenological, effective theory of QCD

Chiral effective field theory

Chiral EFT: low energy approach to QCD, nuclear structure energies Approximate chiral symmetry: pion exchanges, contact interactions Systematic expansion: nuclear forces and electroweak currents

Ab initio many-body methods

Oxygen dripline using chiral NN+3N forces correctly reproduced ab-initio calculations treating explicitly all nucleons excellent agreement between different approaches

No-core shell model (Importance-truncated)

In-medium SRG Hergert et al. PRL110 242501(2013)

Self-consistent Green's function Cipollone et al. PRL111 062501(2013)

Coupled-clusters

Jansen et al. PRL113 142502(2014)

Recent application to ²⁰⁸Pb

Hu, Jiang, Miyagi et al. Nature Phys. 18, 1196 (2022)

Ab initio many-body methods

Oxygen dripline using chiral NN+3N forces correctly reproduced ab-initio calculations treating explicitly all nucleons excellent agreement between different approaches

No-core shell model

(Importance-truncated)

In-medium SRG Hergert et al. PRL110 242501(2013)

Self-consistent Green's function

Cipollone et al. PRL111 062501(2013)

Coupled-clusters

Jansen et al. PRL113 142502(2014)

Recent application to ²⁰⁸Pb

Hu, Jiang, Miyagi et al. Nature Phys. 18, 1196 (2022)

Gamow-Teller transitions: quenching

Single β decays well described by nuclear structure (shell model)

Martínez-Pinedo et al. PRC53 2602 (1996)

Theory needs to "quench" Gamow-Teller operator to reproduce Gamow-Teller lifetimes: problem in nuclear many-body wf or operator? This puzzle has been the target of many theoretical efforts: Arima, Rho, Towner, Bertsch and Hamamoto, Wildenthal and Brown...

No β -decay "quenching" with 2b currents

 β decays (e^- capture): phenomenology vs ab initio

Martinez-Pinedo et al. PRC53 2602(1996)

 $\langle F| \sum_{i} [g_A \sigma_i \tau_i^-]^{\text{eff}} | l \rangle$, $[\sigma_i \tau]^{\text{eff}} \approx 0.7 \sigma_i \tau$ Shell model need $\sigma_i \tau$ "quenching"

Gysbers et al. Nature Phys. 15 428 (2019)

Ab initio calculations including meson-exchange currents and additional nuclear correlations do not need any "quenching"

Origin of β decay "quenching"

Which are main effects missing in conventional β -decay calculations?

Relatively similar and complementary impact of

- nuclear correlations
- meson-exchange currents

Gysbers et al. Nature Phys. 15 428 (2019)

15 / 23

Nuclear matrix elements with 1b+2b currents

Light-neutrino exchange: contact operator

Short-range operator contributes to light-neutrino exchange for RG invariance of two-nucleon decay amplitude: high-energy ν 's

$$T_{1/2}^{-1} = G_{01} g_A^4 \left(M_{\text{long}}^{0\nu} + M_{\text{short}}^{0\nu} \right)^2 \frac{m_{\beta\beta}^2}{m_e^2}, \quad \text{Cirigliano et al. PRL120 202001(2018)}$$

$$\begin{split} M_{\text{short}}^{0\nu} &\equiv \frac{1.2A^{1/3}\,\text{fm}}{g_A^2} \,\langle 0_f^+ | \sum_{n.m} \tau_n^- \tau_n^- \,\mathbb{1} \left[\frac{2}{\pi} \int j_0(qr) \,2g_\nu^{\text{NN}} \,g(\rho/\Lambda) \, \rho^2 d\rho \right] |0_i^+ \rangle, \\ M_{\text{GT}}^{0\nu} &\simeq \frac{1.2A^{1/3}\,\text{fm}}{g_A^2} \,\langle 0_f^+ | \sum_{n.m} \tau_n^- \,\sigma_1 \cdot \sigma_2 \left[\frac{2}{\pi} \int j_0(qr) \,\frac{1}{p^2} \,g_A^2 \, f^2(\rho/\Lambda_A) \, \rho^2 d\rho \right] |0_i^+ \rangle \end{split}$$

Unknown value (and sign) of the hadronic coupling g_{ν}^{NN} !

Lattice QCD calculations can obtain value of g_{ν}^{NN} Davoudi, Kadam, Phys. Rev. Lett. 126, 152003 (2021), PRD105 094502('22) match $nn \rightarrow pp + ee$ amplitude calculated with dispersion QCD methods Cirigliano et al. PRL126 172002 (2021), JHEP 05 289 (2021) charge-independence breaking of nuclear Hamiltonians Cirigliano et al. PRC100, 055504 (2019)

Contact matrix element: relative impact

Modified decay rate:

 $T_{1/2}^{-1} = G_{01} g_A^4 (M_{\text{long}}^{0\nu} + M_{\text{short}}^{0\nu})^2 \frac{m_{\beta\beta}^2}{m_{\pi}^2}$

TABLE II. Values of $C_1 + C_2$ obtained from the CIB contact interactions in various chiral potentials.

Assume
$g_ u^{ m NN} \sim 1 { m fm^2}$
Cirigliano et al.
PRC100 055504 (2019)

Annuma

Model	Ref.	R_S (fm)	$C_0^{ m IT}~({ m fm}^2)$	$(\mathcal{C}_1+\mathcal{C}_2)/2~(fm^2)$	Model	Ref.	Λ (MeV)	$(C_1 + C_2)/2 \ (fm^2)$
NV-Ia*	[38]	0.8	0.0158	-1.03	Entem-Machleidt	[34]	500	-0.47
NV-IIa*	[38]	0.8	0.0219	-1.44	Entem-Machleidt	[34]	600	-0.14
NV-Ic	[38]	0.6	0.0219	-1.44	Reinert et al.	[39]	450	-0.67
NV-IIc	[38]	0.6	0.0139	-0.91	Reinert et al.	[39]	550	-1.01
					NNLO _{sat}	[37]	450	-0.39

$\sim 75\%$ correction for QMC ^{12}Be NME

What about heavy nuclei?

Short-range NME calculations in heavy nuclei

Calculate $M_{short}^{0\nu}$ in heavy nuclei to see impact in $0\nu\beta\beta$ searches

Use g_{ν}^{NN} and Λ values from charge independence breaking (CIB) contact term, chiral EFT potentials assume same value for two CIB couplings $C_1 = C_2$

Reiner et al. Eur. Phys. J. A 54 86 (2018)
"
Piarulli et al. Phys. Rev. C 94 054007 (2016)
"
"
"

Consider Gaussian regulators: $h_s = 2g_{\nu}^{NN}g(p/\Lambda)$

Perform calculations with the nuclear shell model: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹²⁴Sn, ¹²⁸Te, ¹³⁰Te and ¹³⁶Xe

and the quasiparticle random-phase approximation method (QRPA): ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁴Sn, ¹²⁸Te, ¹³⁰Te and ¹³⁶Xe

Long and short-range NME in heavy nuclei

Relatively stable contribution of new term M_S/M_L :

20%-50% impact of short-range NME in shell model 30%-70% impact of short-range NME in QRPA

consistent with 43% effect in IM-GCM for ⁴⁸Ca using result from $nn \rightarrow pp + ee$ decay Wirth et al. PRL127 242502 (2021)

Long and short-range NME in heavy nuclei

Relatively stable contribution of new term M_S/M_L :

20%-50% impact of short-range NME in shell model 30%-70% impact of short-range NME in QRPA

consistent with 43% effect in IM-GCM for ⁴⁸Ca using result from $nn \rightarrow pp + ee$ decay Wirth et al. PRL127 242502 (2021)

20 / 23

BARCELONA

Relative impact of new short-range contribution

In transitions with larger cancellation from tail in NME distribution new short-range term becomes relatively more important

Nuclear shell model: 48 Ca with 25% - 65% contribution consistent with Wirth et al. PRL127 242502 (2021) QRPA: 100 Mo with 50% - 100% contribution due to negative contributions of 1⁺ intermediate states

explains larger QRPA than shell model impact, but less than QMC

Impact on tests of inverted hierarchy of ν mass

With these g_{ν}^{NN} values significant impact on current $0\nu\beta\beta$ limits on neutrino mass, $m_{\beta\beta}$

Ab initio determination based on $nn \rightarrow pp + ee$ result suggests constructive sign between M_L and M_S Wirth et al. PRL127 242502 (2021)

Short-range matrix element may roughly compensate effect of missing correlations meson-exchange currents in shell model, QRPA NME calculations

Summary

 $0\nu\beta\beta$ involves new-physics, hadron-physics, nuclear-physics scales: ideal playground for effective field theories

Chiral EFT very successful in nuclear structure predicts meson-exchange currents which decrease $0\nu\beta\beta$ rate

EFT analysis of $0\nu\beta\beta$ decay requires new short-range term: enchances $0\nu\beta\beta$ rate (better constrain two-nucleon coupling)

