The Joint Physics Analysis Center and its role in Hadron Spectroscopy Analysis

Adam Szczepaniak (IU/JLab)

Andrew Jackura Old Dominion University

History and People of JPAC

INDIANA UNIVERSITY

- A few (earlier) results: for new results I invite you to the parallel sessions
- Future directions and opportunities

Jefferson Lab

Brief history

- Established in 2013 to develop theory and phenomenology in support of experimental program at JLab12.
- Bridge faculty (Emilie Passemar) postdocs, Vincent Mathieu, Igor Danilkin, Cesar Fernandez-Ramirez.

JPAC ca. 2018

Emilie Passemar Indiana University

César Fernández Ramírez

UNAM

Igor Danilkin JGU Mainz

Vincent Mathieu University of Barcelona

The Collaboration

Full Members

Adam Szczepaniak Indiana University

Daniel Winney South China Normal U.

Mikhail Mikhasenko LMU Munich

Vincent Mathieu University of Barc

Emilie Passemar

Indiana University

Robert Perrv University of Barcelona

Wyatt Smith sitv

Former Members

- Diane Schott
- Ina Lorenz
- Jannes Nys
- Ling-Yun Dai
- Meng Shi
- Nathan Sherrill
- Peng Guo
- Tim Londergan
- Vladyslav Pauk

INDIANA UNIVERSITY

Alessandro Pilloni Università di Messina

Astrid Hiller Blin Arkaitz Rodas EK University of Tübingen

AGH University of Krakow

Vanamali Shastry

Affiliated Members

Nadine Hammoud

INP Krakow

Igor Danilkin JG University Mainz

Kevin Quirion Indiana University

Ron Workman

George Washington

University

Sebastian Marek Dawid University of Washington

César Fernández Ramírez

UNED/ICN-UNAM

Miguel Albaladejo

IFIC-CSIC Valencia

Viktor Mokeev

. . . .

- Over time ~40 researchers have been associated with JPAC.
- Majority of former postdocs have long-term or permanent positions.
- Tuesday's JPAC meetings have run continuously for the past 10 years (record over 8h)

Sergi Gonzàlez-Solís

Michael Döring

George Washington

University

Jefferson Lab

Geoffrey Fox

University of Virginia

A 1

Andrew Jackura

University of California,

Berkele

Brief history continues

- (co-)organized over 30 international conferences and workshops,
- including our "own" series: 4 editions of Future Directions in Spectroscopy Analysis (FDSA),
- Two Summer Schools (2015,2017), INT Program (2020)
- Graduate course on reaction

 JPAC served as a liaison between many theoretical and experimental analysis efforts BaBar,BESIII,COMPASS,EIC, LHCb,JLab

lun 16 – 17, 2022 Hybrid JS/Eastern timezone	Enter your search term
Overview Timetable Contribution List Participant List	Recent observations in heavy-quark spectroscopy have provided numerous candidates for hadron resonances which are exotic in nature, the so-called XYZ and Pc states. With a CEBAF energy upgrade to 20-24 GeV these states and other charmonia may be studied in photoproduction and electroproduction measurements at JLab. This workshop aims to identify the key measurements made possible by such an upgrade, utilizing recent theoretical models for production and evaluati
Contact with questions:	the detector performance requirements. Discussion notes: Please add your discussion questions here

What has made JPAC successful

- JPAC is comprised of people from different backgrounds
- JPAC's priority is to provide an intellectually stimulating environment, create future carrier opportunities for it members
- We adopted a horizontal management structure, with decisions made by consensus shared responsibilities and benefits (e.g. publication policy)

Amplitude analysis

Amplitude analysis

1. Amplitudes are analytical functions of $s_1, \dots t_1, \dots$

2. Partial wave amplitudes are analytical functions angular momentum $f_l(s) = f(l, s)$

3. Physical sheet singularities are given by unitarity

4. Unphysical sheet singularities need to be parametrized in order to test microscopic models

For new results see : M.Albaladejo "Khuri-Treiman analysis of the $J/\psi \rightarrow \pi^+\pi^-\pi^0$ reaction" Session: Light Meson Spectroscopy. Friday at 9:25, A.Rodas "Dispersive determination of the σ resonance from lattice QCD, Monday 16:25

Holy Grail: Al as a tool for physics discovery

Apply to data

ΠΓ

Tell the story

 J/ψ

C.Fernandez-Ramirez "Pole extraction and nature of the f0(980)" Session: Light Meson Spectroscopy. Wednesday at 17:50

Brief history of exotics (hybrids)

early data

ditional vibrational levels. In the e^+e^- channel, the first vibrational levels come at

 New perspectives : GlueX,CLAS12, COMPAS, JPAC...

To Resonate or not to Resonate

• The $a_1(1260)$ was for some time confused with the pion exchange

 It is very important to understand production mechanisms : explore analyticity in various kinematical variables

R.Perry: Two pion photo production in the Regge region" Session: Light hadron spectroscopy, Wet 14:30

To Resonance or not to Resonate

To Resonance or not to Resonate

Double regge with Uniform background

Vincent Mathieu

Tensor Meson Photoproduction @CLAS

VM et al (JPAC) PRD102 (2020)

Finite Energy Sum Rules

Dispersion relation (FESR's) for 2-to-3

- Dispersion relations (FESR's) for 2-to-3 more powerful then in 2-to-2 processes (various types) !
- The middle vertex can be measured: what information is there in helicity dependence of the "middle" vertex)
- Sparse applications

DeTarr et al. (1974), Hoyer (1973), Schimada et al (1978), Bibrzycki at al (JPAC) (2021)

Pion exchange

- Photproduction would be the "cleanest" probe of OPE except : how much "pion is in pion exchange" is frame dependent
- Other questions: what is responsible for raising $d\sigma/dt$? (nucleon magnetic term or absorption, e.g. $pn \rightarrow np$)
- How does OPE at high energy compares to OPE at low energies or OPE between heavy quarkonia?

ongoing GLueX analyses

$$\begin{split} \gamma p &\to \pi^+ n \\ &\to \pi^- \Delta^{++} \\ &\to b_1(n, \Delta) \\ &\to a_2(N, \Delta) \end{split}$$

Spectroscopy at the future facilities

Spectroscopy at the future facilities

Z^+ , Production @JLab++, EIC

M. Albaladejo et al. [JPAC], PRD (2020) D.Winney et al. (JPAC).

	170	GeV	$24\mathrm{GeV}$		
	produced	detected	produced	detected	
$Z_c(3900)^+$	2.2 k	371	4.2 k	588	
X(3872)	1.1 k	32	4.2 k	63	

See D.Glazier "Prospects for exotic mesons" at the EIC" Tuesday 17:20

TABLE II. Summary of results for production of some states of interest at the EIC electron and proton beam momentum $5 \times 100 (GeV/c)$ (for electron x proton). Columns show : the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of 6.1×10^{33} cm⁻²s⁻¹; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

Meson	Cross Section (nb)	Production rate (per day)	Decay Branch	Branch Ratio (%)	Events (per day)
$\chi_{c1}(3872)$	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	5	6.1 k
Y(4260)	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	1	1.2 k
$Z_c(3900)$	0.3	0.26 M	$J/\Psi \pi^+$	10	1.6 k
X(6900)	0.015	0.013 M	$J/\Psi J/\Psi$	100	46
$Z_{cs}(4000)$	0.23	0.20 M	$J/\Psi K^+$	10	1.2 k
$Z_b(10610)$	0.04	$0.034 \mathrm{M}$	$\Upsilon(2S) \pi^+$	3.6	24

- Couplings from data as much as possible, not relying on the nature of XYZ
- The model is expected to hold in the highest x- bin
- Model underestimates lower bins, conservative estimates

Jefferson Lab

M_{ν}^2 $t_{\pi p} = 0$

INDIANA UNIVERSITY

J/ψ photo production

 $d\sigma/dt \ [nb / GeV^2]$

 10^{-2}

9

J/ψ-007 [Nature 615 (2023) 7954, 813-816]

GlueX [arXiv:2304.03845]

Two (distinct) approaches: $l_{max} \leq 2$ -t-channel partial waves+ mass radius, gravitational form factors, etc. -s-channel partial waves s-channel thresholds Kharzeev et al. (1999), Brodsky et al (2001) Ji et al.Guo et al. (2021) Z, Mamo, J^{PAC} Zahed, (2020) $l_{max} \leq 3$ to/dt [nb/GeV²] $E_{\gamma} = 8.93 \text{ GeV}$ $E_{-} = 8.93 \text{ GeV}$ - Single channel (1C) Non-resonant (3C-NR) Two channel (2C) Resonant (3C-R) 10-10-Du et al [Eur. Phys. J. C 80 (2020) 1053] 10 **TPAC PAC** $\mathfrak{a}(\lambda \ p \to J/\psi \ p)$ [up] $(\operatorname{dn}) (d \operatorname{dn}) (\operatorname{dn})$ D.Winney: "Dynamics of J/ψ photoproduction near threshold" $\alpha(\lambda b)$

on-resonant (3C-NR)

11

12

sonant (3C-R)

10

 E_{γ} [GeV]

Session: Exotic Hadrons and Candidates" Monday at 14:00

FIG. 1: Fit results for the integrated cross section compared to GlueX data from [37]. Bands correspond to 1σ uncertainties from bootstrap analysis.

12

10

9

11

ngle channel (1C)

Two channel (2C)

10

 E_{γ} [GeV]

19

2+160

What's in the future EXOLIC HADRONS TOPICAL COLLABORATION

- Next 5 y : Complete development of the tools and techniques necessary to extract physics results from the GlueX and CLAS experiments.
- Beyond 5y: Develop a broad program of XYZP studies relevant to the current measurements at accelerators and the future electron-hadron facilities, including the EIC and the upgraded Jefferson Lab.

Jefferson Lab

• All along : Support the growth of the QCD spectroscopy community by investing in the education of next generations.

INDIANA UNIVERSITY

- predicting exotic and non-exotic meson resonances and their properties from lattice QCD;
- reliably **extracting** exotic and non-exotic meson resonances and their production and decay properties from experimental data sets;
- **interpreting** both the experimental and theoretical results.