

The Muon Collider: a challenge for the future

C. Riccardi

on behalf of the International Muon Collider Collaboration

Toward the Muon Collider

Pioneering ideas 2011-2014 MÀP 2013 LEMMA 2019 MICE IMCC Muon Collider Collaboratior

1968 F. Tikhonin "On the effects at colliding µ meson beams"
1969 G.I. Budker "Accelerators and colliding beams"
1979 D. Neuffer "Colliding Muon Beams at 90 GeV"
1981 Skrinsky, Parkhomchuk "Methods of cooling beams of charged particles"

Muon Accelerator Program Low EMittance Muon Accelerator

Muon Ionization Cooling Experiment, M.Bogomilov et al., " Demonstration of cooling by the Muon Ionization Cooling Experiment '

Toward the Muon Collider

Pioneering ideas 2011-2014 MÀP 2013 LEMMA 2019 MICE IMCC Internation Muon Collider 2021 **Collaboration**

1968 F. Tikhonin "On the effects at colliding µ meson beams"
1969 G.I. Budker "Accelerators and colliding beams"
1979 D. Neuffer "Colliding Muon Beams at 90 GeV"
1981 Skrinsky, Parkhomchuk "Methods of cooling beams of charged particles"

Muon Accelerator Program Low EMittance Muon Accelerator

Muon Ionization Cooling Experiment, M.Bogomilov et al., "*Demonstration of cooling by the Muon Ionization Cooling Experiment*"

European Strategy Update – June 19, 2020:

[] an international design study for a muon collider, as it represents a unique opportunity to achieve a multi-TeV energy domain beyond the reach of e + e – colliders, and potentially within a more compact circular tunnel than for a hadron collider. The biggest challenge remains to produce an intense beam of cooled muons, but novel ideas are being explored

HORIZON-INFRA-2022-DEV-01-01 EU MUCOL project approved for 2023-2026

Toward the Muon Collider

Why the Muon Collider

A Muon Collider is a unique possibility of combining high energy with very precise measurements

- pp machines → no limitations from synchrotron radiation
- e⁺e⁻ machines → nominal E_{cm} entirely available

Discovery reach

14 TeV lepton collisions are comparable to 100-200 TeV proton collisions for production of heavy particle pairs

Why the Muon Collider

A Muon Collider is a unique possibility of combining high energy with very precise measurements

Already at 2TeV a muon collider is the most efficient option. Moreover, the luminosity increases linearly with the center-of-mass energy and this drives a broad physics case.

$$L \gtrsim \frac{5 \,\mathrm{years}}{\mathrm{time}} \left(\frac{\sqrt{s_{\mu}}}{10 \,\mathrm{TeV}}\right)^2 2 \cdot 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

$\mathcal{L} = (E_{CM}/10\text{TeV})^2 \times 10 \text{ ab}^{-1}$				
@ 3 TeV	~	1 ab ⁻¹	5 years	
@ 10 TeV	~	10 ab ⁻¹	5 years	

Physics potential

A Muon Collider offers a novel unprecedented physics program

Higgs physics

o Beyond Standard Model

o Muon specific opportunities

 $\mu^+\mu^-$ Single Higgs Production 1000 100 $WW \rightarrow H$ $ZZ \rightarrow H$ $VV \rightarrow W^{\pm}H$ σ [fb] VV→ZH ----- ZH 0.100 - VV→tTH ----- tTH 0.010 0.001 0.5 5 10 50 \sqrt{s} [TeV]

At 3 TeV and L = 1 ab⁻¹ high production cross sect (500k single Higgs)

High rates are accessible for multi-Higgs processes (expected 30k HH at 10 TeV and 10 ab⁻¹)

Physics potential

A Muon Collider offers a novel unprecedented physics program

o Higgs physics

Beyond Standard Model

• Muon specific opportunities

R. Torre, BSM perspective on a Future Muon Collider

A Muon Collider has a technically limited timeline

A development path that can address the major challenges foresees the delivery of a 3 TeV muon collider by 2045; more advanced technology needed for 10+ TeV

Proton drive production as baseline

Key challenge areas - beam quality

Synergies with other concepts or existing facilities

The progress in other accelerator facilities will also benefit the design and construction of the muon collider in the future.

0

key challenge areas - Physics potential evaluation

Beam-induced Background

The main challenge to operating a detector is the fact that muons decay

 $\mu^{-} \rightarrow e^{-} \overline{\nu}_{e} \nu_{\mu}$ interaction with machine components

secondary particles:

- charged hadrons
- neutral hadrons
- o Bethe-Heitler muons
- \circ electrons
- \circ photons

BIB may degrade detector performance:

- \circ shielding nozzles
- proper detector design

BIB properties at $\sqrt{s} = 1.5$ TeV

BIB particles are characterized by extremely large number and low momentum

1204.6721 1905.03725 2105.09116

13 -

Beam-induced Background

1 MeV neutron equivalent fluence

14

Detector

15 -

Tracks reconstruction

Tracker is the closest detector to the IP and the most affected by BIB

Tracks reconstruction

Tracker is the closest detector to the IP and the most affected by BIB

Conformal Tracking

Track reconstruction

Combinatorial Kalman Filter algorithm seeded using hit triplets

18 ---

Jets reconstruction

Jet reconstruction is one of the most difficult reconstruction tasks

collisions.

-∓- b-jets

c-jets

— light jets

100

Muon Collider

 $0.44 < \theta < 2.70$ rad

Simulation

50

- tracks reconstructed with CKF and filtered 1.
- calorimeter hits selected with hit time and energy 2.
- particles reconstructed with PandoraPFA algorithm 3.

1.5

True jet θ [rad]

Jet selection efficiency

0.95

0.9

0.85

0.8

0.75

0.7

0.65

- Pandora clustered into jets with k_t algorithm 4.
- 5. fake jets removed

Jet selection efficiency

0.9

0.8

0.7E

0.6

0.5

0.4

0.3E

energy correction applied 6.

 $\sqrt{s} = 3 \text{ TeV } \mu^+ \mu^-$ collisions, $\sqrt{s} = 1.5 \text{ TeV BIB}$ overlay

Muon Collider

Simulation

0.5

Jets reconstruction performance

20--

Photons and electrons reconstruction

21 -

Muons reconstruction

22 ---

Conclusions

A **Muon Collider** is a unique possibility for the future of high energy physics

- The Muon Collider offers a novel unprecedented physics program
- The biggest challenges are related to the beam quality and the impact on the environment
- Beam-induced Background represents the main challenge in designing the detector
- Detector requirements, performance and the physics reach of a 3 TeV and a 10 TeV muon collider are under study

Thanks for your attention

A timeline for the muon collider R&D programme.

Parameter	Symbol	Unit	Target value		lue
Centre-of-mass energy	$E_{\rm cm}$	TeV	3	10	14
Luminosity	\mathcal{L}	$10^{34}{ m cm^{-2}s^{-1}}$	1.8	20	40
Collider circumference	$C_{ m coll}$	$\mathbf{k}\mathbf{m}$	4.5	10	14
Muons/bunch	N	10^{12}	2.2	1.8	1.8
Repetition rate	$f_{ m r}$	Hz	5	5	5
Beam power	$P_{\rm coll}$	MW	5.3	14.4	20
Longitudinal emittance	$\epsilon_{ m L}$	MeVm	7.5	7.5	7.5
Transverse emittance	ϵ	μm	25	25	25
IP bunch length	σ_z	mm	5	1.5	1.07
IP beta-function	eta	mm	5	1.5	1.07
IP beam size	σ	μm	3	0.9	0.63

- ----

Proton-driven Muon Collider concept

Fully driven by muon lifetime, otherwise would be easy

1-4 MW proton beam @ 5-20 GeV, compressed to 1-3 ns bunches at a 5-10 Hz frequency

Ionization cooling-channel scheme

5 - 30

5 - 10

1 - 3

GeV

Hz

 \mathbf{ns}

Energy

Repetition Rate

RMS bunch length

MICE: Nature vol. 578, p. 53-59 (2020)

lographic. STFC, ben Giunand

Total ionising dose

and in the second se

Subsystem	Region	R dimensions [cm]	Z dimensions [cm]	Material
Vertex Detector	Barrel	3.0 - 10.4	65.0	Si
	Endcap	2.5 - 11.2	8.0 - 28.2	Si
Inner Tracker	Barrel	12.7 - 55.4	48.2 - 69.2	Si
	Endcap	40.5 - 55.5	52.4 - 219.0	Si
Outer Tracker	Barrel	81.9 - 148.6	124.9	Si
	Endcap	61.8 - 143.0	131.0 - 219.0	Si
ECAL	Barrel	150.0 - 170.2	221.0	W + Si
	Endcap	31.0 - 170.0	230.7 - 250.9	W + Si
HCAL	Barrel	174.0 - 333.0	221.0	Fe + PS
	Endcap	307.0 - 324.6	235.4 - 412.9	Fe + PS
Solenoid	Barrel	348.3 - 429.0	412.9	Al
Muon Detector	Barrel	446.1 - 645.0	417.9	Fe + RPC
	Endcap	57.5 - 645.0	417.9 - 563.8	Fe + RPC

- -

Tracking detectors: technology

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu m \times 25\mu m$	$50\mu m \times 1mm$	$50\mu m \times 10mm$
Sensor Thickness	50µm	$100 \mu m$	100µm
Time Resolution	30ps	60ps	60ps
Spatial Resolution	$5\mu m \times 5\mu m$	$7\mu m \times 90\mu m$	$7\mu m \times 90\mu m$

Multiple technological choices being investigated for accurate timing-aware tracking

- Hybrid pixels, CMOS-based, LGAD-based, ...
- Thin sensor (layer)
- Need for powerful yet power-efficient ASICs (smaller feature size) Synergy with HL-LHC and other projects

Calorimeters: performance and technology

Key detector characteristics:

- short integration time
- good time-of-arrival resolution
- longitudinal segmentation
- good radiation hardness
- good energy resolution for physics.

Exploring new technology

 e.g. semi-homogeneous Crilin calorimeter R&D already ongoing

Event reconstruction, key points:

- calorimeter cell energy selection
- particle-flow approach, integrating charged particle information with appropriate selections
- energy calibration
- residual "fake" energy clusters (jets) removal

Muon Collider 1.5 TeV - Neutron Hit Rate vs 0

R&D Goal: develop a detector able to reach good performance on all the three items

~mm

 \sim 100 μ m

 σ_x

Requirements on spatial (~100µm) and time (<1ns) resolutions

 σ_t

 	Hit Rate (Hz/cn	10 ³		
Rate capability	utron		Triple GEM	
\sim 1 kHz/cm ²	Ne	10		
		E		

1 ns

5-10 ns

Detector

RPC (HPL o Glass)

Standard MPGD

(GEM, Micromegas)

Muon System

On going R&D on sub-ns timing with MicroMegas and eco-friendly gas mixtures

1. Look at Cherenkov light, not the ionisation

Photo-electrons created promptly with the MIP passage 2. Remove the drift gap and start the avalanche as soon as possible

Alternatives: The LEMMA Scheme

LEMMA scheme (INFN) P. Raimondi et al.

45 GeV positrons to produce muon pairs; accumulate muons from several steps

$$e^+e^- \rightarrow \mu^+\mu^-$$

Excellent idea, but nature is cruel

Detailed estimates of fundamental limits show that we require a very large positron bunch charge to reach the same luminosity as the proton-based scheme \Rightarrow Need same game changing invention

Neutrino Flux

Goal is to reduce to negligible level, similar to LHC

• 3 TeV, 200 m deep tunnel is about OK

0.01 mSv/yr -> *D*=300 m for 3TeV case

A -----