

Office of Science

© CERN EP Department

ATLAS & CMS turned 30

Results on QGP by ATLAS and CMS

<u>Georgios K Krintiras</u> (on behalf of the ATLAS and CMS collaborations)

The University of Kansas

20th International Conference on Hadron Spectroscopy and Structure

Outline-the probes

• Early dynamics and nPDFs

- E/W bosons
- \circ J/ ψ , flow in very small systems
- Heavy quarks and quarkonia
 - \circ Y(ns), B_s^0, B_c^+
 - J/ψ, Λ⁺
- **Medium modifications**
 - \circ R_{AA} & extensions
 - en. loss in small systems
- **Rare/BSM probes**
 - X(3872), tops, т leptons
- **Run 3 prospects**

Early time dynamics and nPDFs

• Forward-backward σ ratio $R_{FB} \equiv 1$ in the absence of nuclear effects

- <u>W bosons</u>, <u>dijets</u>, <u>top quarks</u> sensitive to gluon modifications at different x
- EW bosons in PbPb mostly unmodified as compared to hadrons (R_{AA}!=1) ⁴

Coherent J/ ψ production in UPC PbPb

arXiv:2303.16984 (submitted to PRL)

• Using ZDCs, higher energy photons are extracted w/o increasing \sqrt{s}

- experimental uncertainty correlated across or W^{Pb}_{VN}
 - flattening of coherent $\sigma(J/\psi)$ vs. W_{vN}^{Pb} not predicted by models

An unprecedentedly low-x gluon regime is probed (10⁻⁴-10⁻⁵)

• LHC data seem to consistently point to a common *x* evolution

Coherent J/ ψ production in UPC PbPb

arXiv:2303.16984 (submitted to PRL)

• Using ZDCs, higher energy photons are extracted w/o increasing $\sqrt{s(!)}$

- experimental uncertainty correlated across or W_{VN}
 - flattening of coherent $\sigma(J/\psi)$ vs. W_{vN}^{Pb} not predicted by models

An unprecedentedly low-x gluon regime is probed (10⁻⁴-10⁻⁵)

• LHC data seem to consistently point to a common *x* evolution

Angular correlations in **vPb and vp**

Phys. Rev. C **104** (2021) 014903 arXiv:2204.13486 (accepted by PLB)

Bridging large with exceedingly small systems (UPC PbPb)

• hierarchy of flow in **pPb** vs **γPb** reproduced by (3+1)D dynamical simulations

• Challenging to go even smaller: tiny flow signal competes with nonflow

• PYTHIA8 describes v_2 in $\gamma p \rightarrow$ jet-like correlations still dominate

Heavy quarks and quarkonia

Y(ns) suppression in PbPb

Observation of Y(3S) now in PbPb too(!)

- indication of ordered (sequential) suppression up to Y(3S) Ο
- input to a series of models to reproduce Y(3S) $R_{\Delta\Delta}$ >0 Ο

Excited states can set strong constraints on models

in the study of initial (pPb) & final-state effects Ο

•

 $\langle N_{part} \rangle$

arXiv:2303.17026 (submitted to PRL) PRC 107 (2023) 054912

Y(ns) suppression in PbPb

arXiv:2303.17026 (submitted to PRL) PRC 107 (2023) 054912

- Observation of Y(3S) now in PbPb too(!)
 - indication of ordered (sequential) suppression up to Y(3S)
 - \circ input to a series of models to reproduce Y(3S) R_{AA}>0

Excited states can set strong constraints on models

• in the study of initial (pPb) & final-state effects

Y(ns) and J/ ψ production in pp

ATLAS-CONF-2022-023 PLB 825 (2021) 136842

- At lower Y p_T: the associated <n_{ch}> in Y(2S) and Y(3S) events < Y(1S)
 - correlation between UE and hard processes

• Prompt J/ ψ have more surrounding jet activity than predicted

late production in the parton shower is underestimated

CMS-PAS-HIN-21-016 CMS-PAS-HIN-21-004

• First measurement of Λ_c^{\dagger}/D^0 vs N_{trk}

o different trend compared to strange sector, i.e., small dependence

Extending the system (pPb 8 TeV), p_τ (<40 GeV), and centrality (0–90%)

- \circ Λ_{c}^{+}/D^{0} in pPb and MB PbPb consistent at intermediate p_{T}
- at high p_T MB and central PbPb approach the ratio from $e^+e^- \rightarrow$ no coalescence

Beauty hadronization in PbPb

PLB 829 (2022) 137062 PRL 128 (2022) 252301

- Observation of B⁰_s
 - indication of enhanced B_s^0/B^+ in PbPb to **pp** at low p_T
 - similar to models with recombination or coalescence
- Observation of B⁺
 - flavor-dependent R_{AA} at low/medium p_T : recombination of c and b

arXiv:2305.16928 (submitted to JHEP) arXiv:2212.01636 (submitted to PLB)

• evidence for b ($\rightarrow D^0$) v₃ >0 at intermediate p_T

Heavy flavor flow in all system

c hadron v₂

- There is charm anisotropy... everywhere
 - apparent ordering: $v_2(PbPb) > v_2(pPb) > v_2(pp)$
- For open bottom hadrons: $v_2(PbPb) > 0$ but $v_2(pPb) \sim v_2(pp) \sim 0$
 - open question whether open/closed b hadrons flow in pPb or not

Medium modifications

Charged hadrons in all syst

arXiv:2211.15257 (submitted to JHEP)

• Extensive study on charged hadron production in pPb, PbPb & XeXe

- R_{pPb}: peak (pT <≈ 3 GeV) and plateau (pT>≈ 10 GeV) regions, centrality dependent
- R_{AA}^{2} < 1 with local max (min) at $p_{T} \approx 3$ (7) GeV; significant centrality dependency 17

Jet quenching depends on jet radius?

JHEP 05 (2021) 284

- Larger jet R → wider area to recover lost energy
 - but **R-independent** suppression seen
- Cross experiment effort
 - Different jet
 collections and UE
 treatment

arXiv:2204.13530 (submitted to EPJC) arXiv:2303.10090 (submitted to PLB)

- Parton mass and color-charge play a major role in energy loss
 - **b jets** and **y-tagged** (i.e., quark-initiated) jets less suppressed than inclusive jets

• Jets with different substructure may experience different energy loss

- recent measurements on
 - 19 <u>substructure-dependent suppression</u> and <u>in-jet particle-momentum distributions</u>

Easy interpretation of flow and R A

PLB 829 (2022) 137077 arXiv:2210.08325 (accepted by JHEP)

- Combining/extending traditional observables
 - Simultaneous measurement of R_{AA} and v_2 for charm and bottom
 - mass splitting at low p_T but converge at high p_T (\gg mb)
 - **Dijet flow**: $\mathbf{v_2} > 0$, consistent with high- p_T hadron v_2 ; $\mathbf{v_3}, \mathbf{v_4} \approx 0 \rightarrow \text{not yet sensitive}(?)$

Challenging interpretation of flow and R A arXiv:2206

arXiv:2206.01138 (submitted to PRL) arXiv:2303.17357 (submitted to PRL)

• $v_2 > 0$ up to high p_T but no modifications of hadron yields

- for $p_T < 8$ GeV "factorization" between hard scattering and long range correlations
- \circ further studies to higher p_T to check whether such factorization is broken or not
- **OO collisions** (pilot run in 2024) key guidance for jet quenching in lighter systems

Rare/BSM probes

PRL 128 (2022) 032001 PRL 125 (2020) 222001

• Evidence of X(3872) production

- its quark configuration remains elusive
- X(3872)/ ψ (2S): <u>non-monotonic</u> N_{trk} trend in pp & more pronounced in larger systems?
- Evidence of top quark pair production
 - uncertainty at HL-LHC competes with nPDF uncertainty; tool for QGP time profile 23

T lepton pair production in UPC PbPb

arXiv:2204.13478 arXiv:2206.05192 (both accepted by PRL)

- Observation of $\gamma \gamma \rightarrow \tau^+ \tau^-$ at LHC
 - ATLAS: full Run 2, multiple final states
 - CMS: part of Run 2, with a single but clean final state
- Model-dependent constraints on a₋ obtained
 - already competing with LEP II limits
 - further improvements on projected **a**₁ at HL-LHC with more final states

Luminosity prospects for Run 3

Improvements in Run 3 pPb and PbPb

EPJ.Plus **136** (2021) 7 CMS-DP-2023-011

• Based on benchmarked models (agree remarkably well with LHC data)

- 1 month of PbPb > Run 2 PbPb data
- 1 month of pPb ≈ 3× Run 2 pPb data

• Some extra improvements expected already in Run 3, e.g.,

 \circ better low-p_T tracking, increased MB trigger rate, etc

From "smoking guns" to high precision

Goals for high-T/low- μ_R QCD matter Experimental tools

Controlling initial conditions

From early phase to hydrodynamization

Transport properties and hadronization

Quenching and connection to smaller systems

Pinning down hydro-like behavior

Precision QED and BSM searches

Further input in WG5 HL-LHC, ATLAS+CMS Snowmass'22, QCD Town Meeting WP, CMS HIN

v_n in γA, γp

Photon-induced processes

$Z/\gamma^* \& W$ production in pPb

<u>JHEP 05 (2021) 182</u> PLB 800 (2020) 135048

• First Z/γ^* study in an extended m_{uu} range

- low m_{uu} sensitive to NNLO corrections
- on-shell production less well described: statistical fluctuations(?)

• Observation of nuclear effects in W boson production

• included in all recent nPDF fits

FINAL

Key characteristics of the nPDF global fits

	KSASG20	nCTEQ15WZSIH	TUJU21	EPPS21	nNNPDF3.0
Order in α_s	NLO & NNLO	NLO	NLO & NNLO	NLO	NLO
IA NC DIS	\checkmark	✓	✓	~	✓
$\nu A CC DIS$	\checkmark		\checkmark	\checkmark	~
pA DY	\checkmark	\checkmark		\checkmark	\checkmark
$\pi A DY$				\checkmark	
RHIC dAu π^0, π^{\pm}		\checkmark		✓	
LHC pPb $\pi^0, \pi^{\pm}, K^{\pm}$		\checkmark			
LHC pPb dijets				✓	\checkmark
LHC pPb D ⁰				✓	√ reweight
LHC pPb W,Z		\checkmark	\checkmark	\checkmark	\checkmark
LHC pPb γ					\checkmark
Q, W cut in DIS	1.3, 0.0 GeV	2.0, 3.5 GeV	1.87, 3.5 GeV	1.3, 1.8 GeV	1.87, 3.5 GeV
p_{T} cut in D ⁰ , <i>h</i> -prod.	N/A	3.0 GeV	N/A	3.0 GeV	0.0 GeV
Data points	4353	<mark>94</mark> 8	2410	2077	2188
Free parameters	9	19	16	24	256
Error analysis	Hessian	Hessian	Hessian	Hessian	Monte Carlo
Free-proton PDFs	CT18	~CTEQ6M	own fit	CT18A	~NNPDF4.0
Free-proton corr.	no	no	no	yes	yes
HQ treatment	FONLL	S-ACOT	FONLL	S-ACOT	FONLL
Indep. flavours	3	5	4	6	6
Reference	PRD 104, 034010	PRD 104, 094005	arXiv:2112.11904	arXiv:2112.12462	arXiv:2201.12363

P. Paakkinen (DIS22)

How to unambiguously access low-x gluons? The theo. solution

Guzey et al., EPJC 74 (2014) 2942

Entering a new regime of small $x \sim 10^{-4}$ -10⁻⁵ in nuclei w/o the need to increase the energy!

HF transport models: ingredients

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU	\checkmark	×	\checkmark	\checkmark	\checkmark
LIDO	\checkmark	\checkmark	\checkmark	\checkmark	
PHSD		×	\checkmark	\checkmark	
DAB-MOD	\checkmark	\checkmark	\checkmark	\checkmark	×
Catania	\checkmark	×		\checkmark	\checkmark
MC@sHQ+EPOS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LBT			\checkmark	\checkmark	\checkmark
POWLANG+HTL	\checkmark	×	\checkmark	\checkmark	
LGR	\checkmark	$\overline{\checkmark}$	\checkmark	\checkmark	

But more importantly: different implementations and input parameters.

Y(ns) suppression in PbPb and pPb

• Observation of Y(3S) now in PbPb too(!)

- indication of ordered (sequential) suppression up to Y(3S) in both systems
- \circ strong challenge for models to reproduce Y(3S) R_{AA}>0

Excited states set strong constraints on models

• In the study of initial-/final-state effects

Heavy flavor flow in PbPb

CMS-PAS-HIN-21-008 arXiv:2212.01636

CMS-PAS-HIN-21-001

Heavy flavor flow in high-multiplicity pPb

- First v₂ measurement for Y(1S)
 - $v_2 \approx 0$ up to 30 GeV(!), similar to <u>a model</u> with final-state interactions only

• Bridging HF flow measurements in large & small systems

- clear **mass hierarchy**: heavier particles flow less
- open question: do open/closed b hadrons flow in pPb?

Charm quark energy loss in PbPb

PRL 129 (2022) 022001 CMS-PAS-HIN-21-004

• **PYTHIA8+CR** describes Λ_c^+/D^0 at $p_T < 10$ GeV in pp, similar to models

containing decays of excited c baryons; involving coalescence and fragmentation

• Extending the p_{τ} (<40 GeV) and centrality (0–90%) reach in PbPb

 $\wedge \Lambda_c^+/D^0$ in pp and PbPb consistent \rightarrow no significant contribution from coalescence

Dijet vn in PbPb

arXiv:2210.08325 (accepted by JHEP)

• Path-length dependent energy loss & its fluctuations

- dijet $v_2 > 0$ with expected centrality dependence; consistent with high- p_{T} hadron v_2
- dijet $v_{3,2}v_4 \approx 0 \rightarrow \text{not yet}(?)$ sensitive to initial-state/en. loss fluctuations

How energy loss is distributed?

<u>JHEP 05 (2021) 116</u> <u>arXiv:2210.08547</u> (accepted by PLB)

- Jet shape: radial profile of particles in dijets, b jets
 - in-medium path length for leading jets is larger when $x_1 \approx 1$ (vice versa for subleading)
 - for b jets
 - small-∆r depletion: sensitive to dead-cone effect
 - Iarge-Δr enhancement: enhanced medium response to b quarks

Improvements in Run 3 PbPb

CMS-DP-2023-011

Improvements expected already in Run 3, e.g.,

- online: increased MB trigger efficiency in peripheral events with ZDC inclusion
- \circ offline: better low-p_T tracking thanks to innermost pixel layer consideration

• Overall CMS will record 25 kHz of MB PbPb events

representing an increase of 80x to 2015 and 3x to 2018

CMS Phase 2 Upgrades (HI related)

CMS-DP-2021-037

Phase 2 Upgrade

CMS Phase 2 for Run 4

- Tracker |n|<4
- Muon ID up to |n|<2.8
- High Granularity Calorimeter
- **MIP timing detector**
 - 4D vertexing
 - p/K/π PID (CMS MTD)
- L1 trigger update: 750 kHz for CMS
- DAQ: 51 GB/s for CMS
- L1 track triggers
- ZDC

CMS Phase-2 1.7 1.6

p/K/π separation

PbPb (5.5 TeV)

- Main batch of CMS Upgrades in Run 4
 - Among others, unique hermetic particle identification coverage by CMS MTD

Physics requests documented in past years over a diverse set of reports

WG5 HL-LHC, ATLAS+CMS Snowmass'22, QCD Town Meeting WP, CMS HIN Ο