Peak-like structures observed in Λ_c decays at Belle

Kiyoshi Tanida <kytanida@gmail.com> (Japan Atomic Energy Agency) @Hadron2023 7 June 2023

Introduction

- Baryons with flavors
 - Good playground for diquark correlation, especially with single heavy quark.
 - Also good to study meson-baryon correlation
 - → Molecular type exotic state: Bound (Feshbach resonance) vs virtual?

Virtual state & threshold cusp

- Molecular type state -- when interaction is not strong enough to make a bound state, there would be a virtual state.
 - E < 0 (bound??), but in different Riemann sheet</p>
 - Appears as threshold cusp instead of usual Breit-Wigner peak (in the narrow sense).
 - However, identification is rather difficult due to experimental resolution
- Are there really such states?
 - Pointing shape is not confirmed yet.

Introduction

- Baryons with flavors
 - Good playground for diquark correlation, especially with single heavy quark.
 - Also good to study meson-baryon correlation
 → Molecular type exotic state: Bound (Feshbach resonance) vs virtual?
- Spectroscopy methods
 - Invariant mass
 - Scatterings with kaon beam
 - New mode: weak decay of heavy flavors

Hyperons from charmed baryon decays

 $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$

 New source for hyperon spectroscopy

 $Entries/(5 MeV/c^2)$

Belle experiment

- Almost 4π, good momentum resolution (Δp/p~0.1%), EM calorimeter, PID & Si Vertex detector
- Finished ~10 years ago, still producing ~20 papers/year

Huge statistics, good quality

Topics of the day

1. Threshold cusp in $\Lambda_c \rightarrow pK^-\pi^+$ [arXiv:2209.00050]

2. Peak at $\overline{K}N$ threshold in $\Lambda_c \rightarrow \Lambda \pi^+ \pi^+ \pi^-$ [PRL130(2023)151903]

3. Summary

1. Peak structure in $\Lambda_c \rightarrow p K^- \pi^+$ [arXiv:2209.00050, submitted to PRL]

Peak structure in $\Lambda_c \rightarrow pK^-\pi^+$

Fit to Breit-Wigner

 Not very good especially near the peak.

 Best χ²/DOF: 308/243

[arXiv:2209.00050, submitted to PRL]

Fit to Flatte

$$\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$$

f(m): non-relativistic Flatte $\frac{1}{m - m_f + \frac{i}{2} \left(\Gamma' + \bar{g}_{\Lambda \eta} k\right)}$

- Improved near the peak
- Best χ²/DOF: 257/243
 - Better than BW by 7σ

[arXiv:2209.00050, submitted to PRL]

Threshold cusp

• The fit explains the peak as a threshold cusp with nearby $\Lambda(1670)$

→ First identification of a threshold cusp from the spectrum shape

• Obtained $\Lambda(1670)$ parameters are consistent with those measured in $\Lambda_c \rightarrow \Lambda \eta \pi^+$ [Belle, PRD103 (2021) 052005]

	Present result	$\Lambda\eta\pi^+$ mode
Mass	1674.4	1674.3±0.8±4.9
Width	$50.3 \pm 2.9^{+4.2}_{-7.1}$	$36.1\pm2.4\pm4.8$

• Λ (1670) might be a $\Lambda\eta$ virtual state?

Interference?

- Higher partial waves (P,D,...) would not affect the cusp shape because
 - Discontinuity in the higher partial waves appear only in the second or higher derivatives
 - The interference with different L vanishes with an integral over the solid angle
 - S-wave interference is approximately considered with a constant.
- This is confirmed by an amplitude analysis based on the LHCb result [arXiv:2208.03262]
 - Consistent results are obtained between the amplitude analysis & one-dimensional fit.

Amplitude analysis with Flatte

• Fit results projection to $M(pK^{-})$ distribution

 $m_0 = 1671.1 \pm 0.2 \text{ MeV}/c^2$ $\Gamma_0 = 39.2 \pm 0.6 \text{ MeV}$ $\chi^2 = 17,885$ (16,384 bins and 61 free parameters)

 $\bar{g}_{pK} = 0.0437 \pm 0.0009$ corresponds to $\Gamma' = 33.3 \pm 0.4$ MeV $\bar{g}_{\Lambda\eta} = 0.218 \pm 0.003$ $\Gamma_{\text{total}} = 52.8 \pm 0.6$ MeV $\chi^2 = 17,827$ (16,384 bins and 60 free parameters)

- Validation for one-dimensional fit
- Amplitude fit with all parameters of Flatté fixed,

 $m_f = 1674.4 \text{ MeV}/c^2$, $\Gamma_{\text{others}} = 15 \text{ MeV}$, $\bar{g}_{pK} = 0.028$, and $\bar{g}_{\Lambda\eta} = 0.253$

 \rightarrow $\Gamma' = 27.2$ MeV, $\bar{g}_{\Lambda\eta} = 0.253$, and $\Gamma_{\text{total}} = 50.3$ MeV

Validation for one-dimensional fit

Parameter	Fit Results	Difference from the infiltrated value Systematical Uncertainty	
Γ'	27.8 ± 0.5 MeV	<mark>0.1</mark> σ	
$ar{g}_{\Lambda\eta}$	0.291 ± 0.007	<mark>0.6</mark> σ	
Γ_{total}	53.9 ± 0.8 MeV	0.9σ	

2. Peak at KN threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$ [PRL130(2023)151903]

Peak at $\overline{K}N$ threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$

20

• Cusp candidates are observed in $\Lambda \pi^{\pm}$ invariant mass spectra, from $\Lambda_{\rm c}$ decay

2 fitting models

1. Standard Breit-Wigner

$$f_{BW} = \frac{\Gamma/2}{(E - E_{BW})^2 + \Gamma^2/4},$$

2. Dalitz model (cusp) [Czech. J. Phys. B**32**, 1021 (1982)] For $\overline{K}N(I = 1)$ scattering length A=a+ib and decay momentum k/ κ (=|k| below the threshold)

$$f_D = \frac{4\pi b}{(1+kb)^2 + (ka)^2}, E > m_{\bar{K}N}$$
$$= \frac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, E < m_{\bar{K}N},$$

neglecting decay form factor

Fitting results

1. Breit-Wigner

Mode	$E_{BW} [{\rm MeV}/c^2]$	$\Gamma [{ m MeV}/c^2]$	χ^2 / NDF
$\Lambda \pi^+$	1434.3 ± 0.6	11.5 ± 2.8	74.4/68
$\Lambda\pi^{-}$	1438.5 ± 0.9	33.0 ± 7.5	92.3/68

2. Dalitz model (cusp)

Mode	$a[\mathrm{fm}]$	$b[\mathrm{fm}]$	χ^2 / NDF
$\Lambda \pi^+$	0.48 ± 0.32	1.22 ± 0.83	68.9/68
$\Lambda \pi^{-}$	1.24 ± 0.57	0.18 ± 0.13	78.1/68

Dalitz model gives slightly better χ^2 , but the difference is not significant.

Results & discussions

- 1. Breit-Wigner Mass +: $1434.3 \pm 0.6^{+0.9}_{-0.0} \text{ MeV/c}^2$ $-: 1438.5 \pm 0.9^{+0.2}_{-2.5} \text{ MeV/c}^2$ Width +: $11.5 \pm 2.8^{+0.1}_{-5.3} \text{ MeV}$ $-: 33.0 \pm 7.5^{+0.1}_{-23.6} \text{ MeV}$
- Significance 7.5(6.2) σ
- This interpretation implies the existence of an exotic state, $\Sigma(1435)$.

Results & discussions

- 2. Dalitz (cusp) $a +: 0.48 \pm 0.32^{+0.38}_{-0.01} \text{ fm}$ $-: 1.24 \pm 0.57^{+1.56}_{-0.16} \text{ fm}$ $b +: 1.22 \pm 0.83^{+2.54}_{-0.18} \text{ fm}$ $-: 0.18 \pm 0.13^{+0.00}_{-0.20} \text{ fm}$
- Many theories predict a cusp here.
 - Due to the attraction between \overline{K} and N in the I=1 channel
- Obtained scattering lengths are larger than most theories, but with large uncertainties (Also, form factor is ignored.)

Summary & Prospect

- Studies on exotic hyperons at Belle with $\Lambda_{\rm c}$ decay
- Observation of threshold cusp in $\Lambda_c \rightarrow p K^- \pi^+$
 - First identification of a threshold cusp from the spectrum shape
 - $-\Lambda$ (1670) as a virtual state?
- Peak/cusp at $\overline{K}N$ threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$
 - Peak? Cusp?
 - Cannot be identified from the spectrum only due to poor S/N.
- More studies should be done with Belle II and other experiments.