ALESSANDRO BACCHETTA, PAVIA U. AND INFN PRESENT KNOWLEDGE OF TMDS

Parton Distribution Functions

$f(x)$
1 dimensional (+scale)

Transverse-Momentum Distributions

$f\left(x, \vec{k}_{T}\right)$
3 dimensional (+ 2 scales)

PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)?

PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)?

PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)?

Preprints: JLAB-THY-23-3780, LA-UR-21-20798,MIT-CTP/5386

TMD Handbook

Renaud Boussarie ${ }^{1}$, Matthias Burkardt ${ }^{2}$, Martha Constantinou ${ }^{3}$, William Detmold ${ }^{4}$, Markus Ebert ${ }^{4,5}$, Michael Engelhardt ${ }^{2}$, Sean Fleming ${ }^{6}$, Leonard Gamberg ${ }^{7}$, Xiangdong Ji ${ }^{8}$, Zhong-Bo Kang ${ }^{9}$,
Christopher Lee ${ }^{10}$, Keh-Fei Liu ${ }^{11}$, Simonetta Liuti ${ }^{12}$, Thomas Mehen ${ }^{13}$, Andreas Metz ${ }^{3}$, John Negele ${ }^{4}$, Daniel Pitonyak ${ }^{14}$, Alexei Prokudin ${ }^{7,16}$, Jian-Wei Qiu ${ }^{16,17}$, Abha Rajan ${ }^{12,18}$, Marc Schlegel ${ }^{2,19}$,
Phiala Shanahan ${ }^{4}$, Peter Schweitzer ${ }^{20}$, Iain W. Stewart ${ }^{4}$, Andrey Tarasov ${ }^{21,22}$, Raju Venugopalan ${ }^{18}$, Ivan Vitev ${ }^{10}$, Feng Yuan ${ }^{23}$, Yong Zhao ${ }^{24,4,18}$

Preprints: JLAB-THY-23-3780, LA-UR-21-20798,MIT-CTP/5386

TMD Handbook

Renaud Boussarie ${ }^{1}$, Matthias Burkardt ${ }^{2}$, Martha Constantinou ${ }^{3}$, William Detmold ${ }^{4}$, Markus Ebert ${ }^{4}{ }^{4}$, Michael Engelhardt ${ }^{2}$, Sean Fleming ${ }^{6}$, Leonard Gamberg ${ }^{7}$, Xiangdong Ji ${ }^{8}$, Zhong-Bo Kang ${ }^{9}$,
Christopher Lee ${ }^{10}$, Keh-Fei Liu ${ }^{11}$, Simonetta Liuti ${ }^{12}$, Thomas Mehen ${ }^{13}$, Andreas Metz ${ }^{3}$, John Negele ${ }^{4}$, Daniel Pitonyak ${ }^{14}$, Alexei Prokudin ${ }^{7,16}$, Jian-Wei Qiu ${ }^{16,17}$, Abha Rajan ${ }^{12,18}$, Marc Schlegel ${ }^{2,19}$,
Phiala Shanahan ${ }^{4}$, Peter Schweitzer ${ }^{20}$, Iain W. Stewart ${ }^{4}$, Andrey Tarasov ${ }^{21,22}$, Raju Venugopalan ${ }^{18}$, Ivan Vitev ${ }^{10}$, Feng Yuan ${ }^{23}$, Yong Zhao ${ }^{24,4,18}$

TMD TABLES: QUARK, LEADING TWIST

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

- Very good knowledge of x dependence of f_{1} and $g_{1 L}$

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

- Very good knowledge of x dependence of f_{1} and $g_{1 L}$
- Good knowledge of the k_{T} dependence of f_{1} (also for pions)

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

- Very good knowledge of x dependence of f_{1} and $g_{1 L}$
- Good knowledge of the k_{T} dependence of f_{1} (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

- Very good knowledge of x dependence of f_{1} and g_{11}
- Good knowledge of the k_{T} dependence of f_{1} (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)
- Some hints about all others

QUARK, SUBLEADING TWIST

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

QUARK, SUBLEADING TWIST

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

- Lots of progress from the theory side

```
Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pijlman, hep-ph/0405154
Goeke, Metz, Schlegel, hep-ph/0504130
```

$\stackrel{8}{2}$	quark pol.				
		U	L	T	
	U	f^{\perp}	g^{\perp}	e	h
\%	L	f_{L}^{\perp}	g_{L}^{\perp}	h_{L}	e_{L}
I	T	f_{T}, f_{T}^{\perp}	g_{T}, g_{T}^{\perp}	h_{T}, h_{T}^{\perp}	e_{T}, e_{T}^{\perp}

```
Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pijlman, hep-ph/0405154
Goeke, Metz, Schlegel, hep-ph/0504130
```

- Lots of progress from the theory side
- Some knowledge of gt x-dependence

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

- Lots of progress from the theory side
- Some knowledge of gt x-dependence
- First hints about e x-dependence

$\stackrel{0}{0}$		quark pol.			
		U	L	T	
	U	f^{\perp}	g^{\perp}	e	h
Of	L	f_{L}^{\perp}	g_{L}^{\perp}	h_{L}	e_{L}
I	T	f_{T}, f_{T}^{\perp}	g_{T}, g_{T}^{\perp}	h_{T}, h_{T}^{\perp}	e_{T}, e^{\perp}

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

```
Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130
```

- Lots of progress from the theory side
- Some knowledge of gt x-dependence
- First hints about e x-dependence
- All others unknown

GLUONS, LEADING TWIST

gluon pol.

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

GLUONS, LEADING TWIST

- Good knowledge of x-dependence of f_{1} and g_{11}

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

GLUONS, LEADING TWIST

			gluo	
		U	L	linear
0	U	f_{1}^{g}		$h_{1}^{\perp g}$
${ }_{8}$	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
z	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

- Good knowledge of x-dependence of f_{1} and g_{11}
- Some hints on the k_{T} dependence of f_{1}

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

GLUONS, LEADING TWIST

			gluo	
		U	L	linear
0	U	f_{1}^{g}		$h_{1}^{\perp g}$
${ }_{8}$	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
z	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

- Good knowledge of x-dependence of f_{1} and g_{11}
- Some hints on the k_{T} dependence of f_{1}

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

QUARKS

TMDS IN DRELL-YAN PROCESSES

The analysis is usually done in Fourier-transformed space

The analysis is usually done in Fourier-transformed space TMDs formally depend on two scales, but we set them equal.

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{\boldsymbol{T}} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)}\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\mathrm{resum}}+g_{K}}
$$

$$
\begin{aligned}
& \hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right) \\
& \left.\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right.}\right)\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text {resum }}+g_{K}} \\
& \mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{T}}
\end{aligned}
$$

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

perturbative Sudakov form factor
$\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text {resum }}+g_{K}}$

$$
\mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{T}}
$$

$$
\mu_{b^{*}}=\frac{2 e^{-\gamma_{E}}}{\bar{b}_{*}}
$$

Collins-Soper kernel (perturbative and nonperturbative)

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

perturbative Sudakov form factor

$$
\mu_{b^{*}}=\frac{2 e^{-\gamma_{E}}}{\bar{b}_{*}}
$$

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	$\chi^{2} / \mathrm{N}_{\text {points }}$
$\begin{gathered} \text { Pavia } 2017 \\ \text { arXiv:1703.10157 } \end{gathered}$	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059	1.55
$\begin{gathered} \text { SV } 2019 \\ \text { arXiv:1912.06532 } \end{gathered}$	N3LL-	\checkmark	\checkmark	\checkmark	\checkmark	1039	1.06
$\begin{gathered} \text { MAP22 } \\ \text { arXiv:2206.07598 } \end{gathered}$	N3LL-	\checkmark	\checkmark	\checkmark	\checkmark	2031	1.06

MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov,
arXiv:1912.06532

$x-Q^{2}$ COVERAGE

MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the 68% CL.

FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the 68% CL.

CONNECTIONS WITH LATIICE QCD: COLLINS-SOPER KERNEL

CONNECTION WITH LATIICE QCD: TMDS

Lattice OCD

TMD pheno

FLAVOR DEPENDENCE OF TMDS

FLAVOR DEPENDENCE OF TMDS

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

ART23

$\mathrm{N}^{4} \mathrm{LL}-$ accuracy
Drell-Yan only

MOST RECENT EXTRACTION

ART23

$\mathrm{N}^{4} \mathrm{LL}^{-}$accuracy

Drell-Yan only

MOST RECENT EXTRACTION

ART23
$\mathrm{N}^{4} \mathrm{LL}-$ accuracy
Drell-Yan only

Different up and down TMDs

AVAILABLE TOOLS: NANGA PARBAT

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:
https://github.com/MapCollaboration/NangaParbat
For the last development branch you can clone the master code:

arTeMiDe

Download

Recent version/release can be found in repository.

Articles, presentations \& supplementary materials

Extra pictures for the paper arXiv:1902.08474
Seminar of A. Vladimirov in Pavia 2018 on TMD evolution.
Link to the text in Inspire.
Archive of older links/news.

About us \& Contacts

If you have found mistakes, or have suggestions/questions, please, contact us.

Some extra materials can be found on Alexey's web-page
Alexey Vladimirov Alexey.Vladimiroviophysik.uni-regensburg.de
Ignazio Scimemi ignazios@fis.ucm.es

SIVERS FUNCTION

$\rho_{N \uparrow}^{q}\left(x, k_{x}, k_{y} ; Q^{2}\right)=f_{1}^{q}\left(x, k_{T}^{2} ; Q^{2}\right)-\frac{k_{x}}{M} f_{1 T}^{\perp q}\left(x, k_{T}^{2} ; Q^{2}\right)$
In a nucleon polarized in the $+y$ direction, the distribution of quarks can be distorted in the x direction

SIVERS FUNCTION

$\rho_{N \uparrow}^{q}\left(x, k_{x}, k_{y} ; Q^{2}\right)=f_{1}^{q}\left(x, k_{T}^{2} ; Q^{2}\right)-\frac{k_{x}}{M} f_{1 T}^{\perp q}\left(x, k_{T}^{2} ; Q^{2}\right)$
In a nucleon polarized in the $+y$ direction, the distribution of quarks can be distorted in the x direction

Bacchetta, Delcarro,
Pisano, Radici, arXiv:2004.14278

Echevarria, Kang, Terry, arXiv:2009.10710

Bury, Prokudin, Vladimirov, arXiv:2103.03270

$\mathrm{Q}=2 \mathrm{GeV}$
Bacchetta, Delcarro,
Pisano, Radici,
arXiv:2004.14278

$$
\mathrm{Q}=2 \mathrm{GeV}
$$

Bacchetta, Delcarro,
Pisano, Radici,
arXiv:2004.14278

(a)

Bury, Prokudin,
Vladimirov,
arXiv:2103.03270

GLUONS

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi,
Vladimirov, arXiv:1907.03780

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi,
Vladimirov, arXiv:1907.03780

Quarkonium-pair production
Scarpa, Boer, Echevarria, Lansberg,
Pisano, Schlegel, arXiv:1909.05769

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi,
Vladimirov, arXiv:1907.03780

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg,

Pisano, Schlegel, arXiv:1909.05769

Gaussian $\left\langle\mathrm{K}_{T}^{2}\right\rangle=3.3 \pm 0.8 \mathrm{GeV}^{2}$ Evolved $\mathrm{f}_{\mathrm{l}}{ }^{9}, \mathrm{~b}_{\text {Tim }} \in[2 ; 8] \mathrm{GeV}^{-1} \square$

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi,
Vladimirov, arXiv:1907.03780

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg,

Pisano, Schlegel, arXiv:1909.05769

GLUON TMD MODELING

Spectator model

GLUON TMD MODELING

Spectator model

Reproduces collinear gluon PDFs

GLUON TMD MODELING

Reproduces collinear gluon PDFs
$x f_{i}^{9}$

Spectator model

Generates nontrivial and widely different TMDs

GLUON TMD MODELING

Reproduces collinear gluon PDFs $x f_{1}^{9}$

Spectator model

Generates nontrivial and widely different TMDs

GLUON SIVERS TMD MODELING

GLUON SIVERS TMD MODELING

FUTURE

WE NEED MORE DATA

WE NEED MORE DATA

EIC AND JLAB22 IMPACT

EIC

EIC

- From the theoretical side, the formalism to study TMDs is well known, for quarks and gluons at leading twist
- From the theoretical side, the formalism to study TMDs is well known, for quarks and gluons at leading twist
- Improvements are still needed, e.g., subleading twist and other power corrections, increase of perturbative accuracy
- From the theoretical side, the formalism to study TMDs is well known, for quarks and gluons at leading twist
- Improvements are still needed, e.g., subleading twist and other power corrections, increase of perturbative accuracy
- From the phenomenological side, we have a good knowledge of the unpolarized TMD, some knowledge of the Sivers function, and some sparse information about other TMDs.

