ALESSANDRO BACCHETTA, PAVIA U. AND INFN PRESENT KNOWLEDGE OF TMDS

Parton Distribution Functions f(x)

1 dimensional (+scale)

Transverse-Momentum Distributions $f(x, \vec{k}_T)$ 3 dimensional (+ 2 scales)

How "wide" is the distribution?

Is there a difference between flavors?

Is there a difference between flavors?

RECENT REVIEW

Preprints: JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386

TMD Handbook

Renaud Boussarie¹, Matthias Burkardt², Martha Constantinou³, William Detmold⁴, Markus Ebert^{4,5}, Michael Engelhardt², Sean Fleming⁶, Leonard Gamberg⁷, Xiangdong Ji⁸, Zhong-Bo Kang⁹, Christopher Lee¹⁰, Keh-Fei Liu¹¹, Simonetta Liuti¹², Thomas Mehen¹³, Andreas Metz³, John Negele⁴, Daniel Pitonyak¹⁴, Alexei Prokudin^{7,16}, Jian-Wei Qiu^{16,17}, Abha Rajan^{12,18}, Marc Schlegel^{2,19}, Phiala Shanahan⁴, Peter Schweitzer²⁰, Iain W. Stewart⁴, Andrey Tarasov^{21,22}, Raju Venugopalan¹⁸, Ivan Vitev¹⁰, Feng Yuan²³, Yong Zhao^{24,4,18}

<u>TMD collaboration, "TMD Handbook," arXiv:2304.03302</u>

RECENT REVIEW

Preprints: JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386

TMD Handbook

Renaud Boussarie¹, Matthias Burkardt², Martha Constantinou³, William Detmold⁴, Markus Ebert^{4,5}, Michael Engelhardt², Sean Fleming⁶, Leonard Gamberg⁷, Xiangdong Ji⁸, Zhong-Bo Kang⁹, Christopher Lee¹⁰, Keh-Fei Liu¹¹, Simonetta Liuti¹², Thomas Mehen¹³, Andreas Metz³, John Negele⁴, Daniel Pitonyak¹⁴, Alexei Prokudin^{7,16}, Jian-Wei Qiu^{16,17}, Abha Rajan^{12,18}, Marc Schlegel^{2,19}, Phiala Shanahan⁴, Peter Schweitzer²⁰, Iain W. Stewart⁴, Andrey Tarasov^{21,22}, Raju Venugopalan¹⁸, Ivan Vitev¹⁰, Feng Yuan²³, Yong Zhao^{24,4,18}

<u>TMD collaboration, "TMD Handbook," arXiv:2304.03302</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd <u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

Very good knowledge of x dependence of f_1 and g_{1L}

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)
- Some hints about all others

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

Lots of progress from the theory side

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of g_T x-dependence

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of g_T x-dependence
- First hints about e x-dependence

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of g_T x-dependence
- First hints about e x-dependence
- All others unknown

		gluon pol.		
		U	L	linear
pol.	U	f_1^g		$h_1^{\perp g}$
nucleon	L		g^g_{1L}	$h_{1L}^{\perp g}$
	Т	$f_{1T}^{\perp g}$	g^g_{1T}	$h_1^g, h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

		gluon pol.		
		U	L	linear
pol.	U	f_1^g		$h_1^{\perp g}$
nucleon	L		g^g_{1L}	$h_{1L}^{\perp g}$
	Т	$f_{1T}^{\perp g}$	g^g_{1T}	$h_1^g, h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

Good knowledge of x-dependence of f₁ and g_{1L}

		gluon pol.		
		U	L	linear
pol.	U	f_1^g		$h_1^{\perp g}$
nucleon	L		g^g_{1L}	$h_{1L}^{\perp g}$
	Т	$f_{1T}^{\perp g}$	g^g_{1T}	$h_1^g, h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

- Good knowledge of
 x-dependence of f₁ and g_{1L}
- Some hints on the k_T dependence of f₁

		gluon pol.		
		U	L	linear
pol.	U	f_1^g		$h_1^{\perp g}$
nucleon	L		g^g_{1L}	$h_{1L}^{\perp g}$
	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

- Good knowledge of
 x-dependence of f₁ and g_{1L}
- Some hints on the k_T dependence of f₁

TMDS IN DRELL-YAN PROCESSES

TMDS IN DRELL-YAN PROCESSES

The analysis is usually done in Fourier-transformed space

TMDS IN DRELL-YAN PROCESSES

The analysis is usually done in Fourier-transformed space TMDs formally depend on two scales, but we set them equal.

TMDS IN SEMI-INCLUSIVE DIS (SIDIS)

1	1	

TMD STRUCTURE

 $\hat{f}_1^a(x, |\boldsymbol{b}_T|; \mu, \zeta) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^a(x, \boldsymbol{k}_\perp^2; \mu, \zeta)$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

TMD STRUCTURE

 $\hat{f}_1^a \left(x, |\boldsymbol{b}_T|; \mu, \zeta \right) = \int d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right) d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp \right)$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} (\gamma$

$$\mu,\zeta)$$

$$\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}} \right)^{K_{\text{resum}} + g_K}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x,$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_T}$$

$$\mu,\zeta)$$

$$\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}} \right)^{K_{\text{resum}} + g_K}$$

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\frac{d\mu}{d\mu} \right)$$

collinear PDF

 $\mu_b = \frac{2e^{-\gamma_E}}{b_T}$

matching coefficients (perturbative)

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

TMD GLOBAL FITS

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	χ²/N _{point}
Pavia 2017 <u>arXiv:1703.10157</u>	NLL					8059	1.55
SV 2019 <u>arXiv:1912.06532</u>	N ³ LL-					1039	1.06
MAP22 <u>arXiv:2206.07598</u>	N ³ LL-					2031	1.06

ints	

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

EXAMPLE OF RESULTING TMDS

68% CL.

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the

EXAMPLE OF RESULTING TMDS

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the 68% CL.

CONNECTIONS WITH LATTICE QCD: COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

CONNECTION WITH LATTICE QCD: TMDS

LPC collaboration, arxiv:2211.02340

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

MOST RECENT EXTRACTION

ART23

N⁴LL[–] accuracy

Drell-Yan only

Moos, Scimemi, Vladimirov, Zurita, 2305.07473

MOST RECENT EXTRACTION

ART23

N⁴LL[–] accuracy

Drell-Yan only

Moos, Scimemi, Vladimirov, Zurita, 2305.07473

MOST RECENT EXTRACTION

ART23

N⁴LL[–] accuracy

Drell-Yan only

Moos, Scimemi, Vladimirov, Zurita, 2305.07473

AVAILABLE TOOLS: NANGA PARBAT

Ξ README.md

> Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

https://github.com/MapCollaboration/NangaParbat

ð

AVAILABLE TOOLS: ARTEMIDE

https://teorica.fis.ucm.es/artemide/

Articles, presentations & supplementary materials

Extra pictures for the paper arXiv:1902.08474

Seminar of A.Vladimirov in Pavia 2018 on TMD evolution.

Link to the text in Inspire.

Archive of older links/news.

About us & Contacts

If you have found mistakes, or have suggestions/questions,

please, contact us.

Some extra materials can be found on Alexey's web-page

Alexey Vladimirov Alexey.Vladimirov@physik.uni-regensburg.de

Ignazio Scimemi ignazios@fis.ucm.es

AVAILABLE TOOLS: TMDLIB AND TMDPLOTTER

https://tmdlib.hepforge.org/

PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)?

PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)?

SIVERS FUNCTION

$$\rho_{N^{\uparrow}}^{q}(x,k_{x},k_{y};Q^{2}) = f_{1}^{q}(x,k_{T}^{2};Q^{2}) - \frac{k_{x}}{M}f_{1T}^{\perp q}(x,k_{T}^{2};Q^{2})$$

In a nucleon polarized in the +y direction,

the distribution of quarks can be distorted in the x direction

Q^{2})

SIVERS FUNCTION

 $\rho_{N^{\uparrow}}^{q}(x,k_{x},k_{y};Q^{2}) = f_{1}^{q}(x,k_{T}^{2};Q^{2}) - \frac{k_{x}}{M}f_{1T}^{\perp q}(x,k_{T}^{2};Q^{2})$

In a nucleon polarized in the +y direction, the distribution of quarks can be distorted in the x direction $\int_{a}^{b} dt r dt$

Bury, Prokudin, Vladimirov, arXiv:2103.03270

3D STRUCTURE IN MOMENTUM SPACE

Q=2GeV

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

3D STRUCTURE IN MOMENTUM SPACE

Q=2GeV

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

Bury, Prokudin, Vladimirov, arXiv:2103.03270

Higgs production <u>Gutierrez-Reyes, Leal-Gomez, Scimemi,</u>

Vladimirov, arXiv:1907.03780

Higgs production <u>Gutierrez-Reyes, Leal-Gomez, Scimemi,</u>

Vladimirov, arXiv:1907.03780

Higgs production <u>Gutierrez-Reyes, Leal-Gomez, Scimemi,</u>

Vladimirov, arXiv:1907.03780

Higgs production <u>Gutierrez-Reyes, Leal-Gomez, Scimemi,</u>

Vladimirov, arXiv:1907.03780

Higgs production <u>Gutierrez-Reyes, Leal-Gomez, Scimemi,</u> <u>Vladimirov, arXiv:1907.03780</u>

Several complications: factorization breaking, generalized universality, shape functions, linearly polarized gluons

GLUON TMD MODELING

Bacchetta, Celiberto, Radici, Taels, arxiv:2005.02288

Spectator model

GLUON TMD MODELING

Bacchetta, Celiberto, Radici, Taels, arxiv:2005.02288

Spectator model

GLUON SIVERS TMD MODELING

Bacchetta, Celiberto, Radici, in preparation

GLUON SIVERS TMD MODELING

Bacchetta, Celiberto, Radici, in preparation

GLUON SIVERS TMD MODELING

Bacchetta, Celiberto, Radici, in preparation

FUTURE

EIC AND JLAB22 IMPACT

EIC

EIC AND JLAB22 IMPACT

CONCLUSIONS

CONCLUSIONS

From the theoretical side, the formalism to study TMDs is well known, for quarks and gluons at leading twist

CONCLUSIONS

- From the theoretical side, the formalism to study TMDs is well known, for quarks and gluons at leading twist
- Improvements are still needed, e.g., subleading twist and other power corrections, increase of perturbative accuracy

- From the theoretical side, the formalism to study TMDs is well known, for quarks and gluons at leading twist
- Improvements are still needed, e.g., subleading twist and other power corrections, increase of perturbative accuracy
- From the phenomenological side, we have a good knowledge of the unpolarized TMD, some knowledge of the Sivers function, and some sparse information about other TMDs.

