
PRESENT KNOWLEDGE OF TMDS
ALESSANDRO BACCHETTA, PAVIA U. AND INFN



Transverse plane

↑

k+ = xP+
Longitudinal momentum

partons



Transverse plane

↑

k+ = xP+
Longitudinal momentum

partons

Parton Distribution Functions

1 dimensional (+scale)
f(x)



Transverse plane

↑

k+ = xP+
Longitudinal momentum

partons



Transverse plane

↑

k+ = xP+
Longitudinal momentum

partons

Transverse momentum
~kT

<latexit sha1_base64="SymqdgxJNp0eGPz/5SbKlfxK0OM=">AAAGH3icnVRNb9MwGPYGgVEYbHDkYtEhcdhK0m0a0iQ0wYVj0boP1FSV47itqe1EtjPaWf4VXOHAr+GGuO7f4GQFLWlUEJZivX6e93k/HNtRyqjSvn+1snrrtnfn7tq9xv0H6w8fbWw+PlVJJjE5wQlL5HmEFGFUkBNNNSPnqSSIR4ycRZO3OX92QaSiiejqWUr6HI0EHVKMtIM+hBcEm4kddAcbTb/lFwMuGsHcaIL56Aw2PRDGCc44ERozpFQv8FPdN0hqihmxjTBTJEV4gkakl8ZDTabb8QVNlUCcqG1HFkbfFD1Y+NwhMRwm0n1CwwK9GcMgrtSMR86TIz1WVS4H67hepoev+oaKNNNE4OtEw4xBncB8Q2BMJcGazZyBsKSueojHSCKs3bY1QkE+4YRzJGITsqF1Exlqu14m5MgRko7G2pbrkhLNbKPsTKk11JYxYg2pQLHD4grm2jdhlLA434mEVVgtrXFlcNiVtkJFfJkwr36E3KKCK5ozbl5gptFHa6YD86aa6HJszeVgXA2krelWW06VLWbKElHiwihCshf0TQPOR8iV21Ji9nlmb4BoQqJk2ivO3VboRCZMx0johJtmYO2WXQiwU4qQe/3F5X+SFAEqHUmUNxRGdMRChsSIkSL7b0nbSUKJqMpzmZ3dVOcHKmPE+K2DfBG03WzDQ2jXb8adEF3EPfwX8XaREuZFSOdfFFH5KUK5q+x+oQsshbv/bUg4FNerHb+177vly1IJzrVOM/mj2duv0aR1mnR5nuM6zfFyTadO01muYXUatqCBDfdmBtUXctE4bbeC3Vb7/V7z6PX89VwDT8Ez8AIE4AAcgXegA04ABhx8Bl/AV++b99374f28dl1dmWuegNLwrn4Bi+cTMQ==</latexit>



Transverse plane

↑

k+ = xP+
Longitudinal momentum

partons

Transverse momentum
~kT

<latexit sha1_base64="SymqdgxJNp0eGPz/5SbKlfxK0OM="></latexit>

Transverse-Momentum Distributions

3 dimensional (+ 2 scales)
f(x,~kT )

<latexit sha1_base64="INfJSLkuQcMBgWnAouVWc3j7ibg="></latexit>



PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)? 4



PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)? 4

How “wide” is the distribution?



PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)? 4

How “wide” is the distribution?

How does it change with x?



PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)? 4

How “wide” is the distribution?

How does it change with x?
Is there a difference between flavors?



PRESENT KNOWLEDGE (OR LACK OF KNOWLEDGE)? 4

How “wide” is the distribution?

What happens if we include spin?

How does it change with x?
Is there a difference between flavors?



RECENT REVIEW 5

Preprints: JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386

TMD Handbook
Renaud Boussarie1, Matthias Burkardt2, Martha Constantinou3, William Detmold4, Markus Ebert4,5,

Michael Engelhardt2, Sean Fleming6, Leonard Gamberg7, Xiangdong Ji8, Zhong-Bo Kang9,
Christopher Lee10, Keh-Fei Liu11, Simonetta Liuti12, Thomas Mehen13, Andreas Metz3, John Negele4,

Daniel Pitonyak14, Alexei Prokudin7,16, Jian-Wei Qiu16,17, Abha Rajan12,18, Marc Schlegel2,19,
Phiala Shanahan4, Peter Schweitzer20, Iain W. Stewart4, Andrey Tarasov21,22, Raju Venugopalan18,

Ivan Vitev10, Feng Yuan23, Yong Zhao24,4,18

1CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
2Department of Physics, New Mexico State University, Las Cruces, NM 88003

3Department of Physics, Temple University, Philadelphia, PA 19122 - 1801, USA
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

5Max Planck Institut für Physik, Föhringer Ring 6, 80805 Munich, Germany
6Department of Physics, University of Arizona, Tucson, AZ 85721

7Division of Science, Penn State University Berks, Reading, PA 19610
8Maryland Center for Fundamental Physics, University of Maryland, College Park, 20742, USA

9Department of Physics and Astronomy, University of California, Los Angeles, CA 90095
10Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

11Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506
12Department of Physics, University of Virginia, Charlottesville, VA 22904

13Department of Physics, Duke University, Durham, NC 27708
14Department of Physics, Lebanon Valley College, Annville, Pennsylvania 17003

15Department of Physics, Old Dominion University, Norfolk, VA 23529
16Theory Center, Jefferson Lab, Newport News, Virginia 23606

17Department of Physics, William & Mary, Williamsburg, Virginia 23187
18Physics Department, Brookhaven National Laboratory, Upton, NY 11973

19Institute for Theoretical Physics, Tübingen University, 72076 Tübingen, Germany
20Department of Physics, University of Connecticut, Storrs, CT 06269

21Department of Physics, North Carolina State University, Raleigh, NC 27607
22Joint BNL-SBU Center for Frontiers in Nuclear Science at Stony Brook University, Stony Brook, NY 11794

23Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
24Physics Division, Argonne National Laboratory, Lemont, IL 60439

Abstract
This handbook provides a comprehensive review of transverse-momentum-dependent

parton distribution functions and fragmentation functions, commonly referred to as transverse
momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton
and other hadrons with respect to both their longitudinal and transverse momenta. They
provide unique insight into the internal momentum and spin structure of hadrons, and are a
key ingredient in the description of many collider physics cross sections. Understanding TMDs
requires a combination of theoretical techniques from quantum field theory, nonperturbative
calculations using lattice QCD, and phenomenological analysis of experimental data. The
handbook covers a wide range of topics, from theoretical foundations to experimental analyses,
as well as recent developments and future directions. It is intended to provide an essential
reference for researchers and graduate students interested in understanding the structure of
hadrons and the dynamics of partons in high energy collisions.

ar
X

iv
:2

30
4.

03
30

2v
1 

 [h
ep

-p
h]

  6
 A

pr
 2

02
3

TMD collaboration, “TMD Handbook,” arXiv:2304.03302

http://www.arxiv.org/abs/2304.03302


RECENT REVIEW 5

Preprints: JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386

TMD Handbook
Renaud Boussarie1, Matthias Burkardt2, Martha Constantinou3, William Detmold4, Markus Ebert4,5,

Michael Engelhardt2, Sean Fleming6, Leonard Gamberg7, Xiangdong Ji8, Zhong-Bo Kang9,
Christopher Lee10, Keh-Fei Liu11, Simonetta Liuti12, Thomas Mehen13, Andreas Metz3, John Negele4,

Daniel Pitonyak14, Alexei Prokudin7,16, Jian-Wei Qiu16,17, Abha Rajan12,18, Marc Schlegel2,19,
Phiala Shanahan4, Peter Schweitzer20, Iain W. Stewart4, Andrey Tarasov21,22, Raju Venugopalan18,

Ivan Vitev10, Feng Yuan23, Yong Zhao24,4,18

1CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
2Department of Physics, New Mexico State University, Las Cruces, NM 88003

3Department of Physics, Temple University, Philadelphia, PA 19122 - 1801, USA
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

5Max Planck Institut für Physik, Föhringer Ring 6, 80805 Munich, Germany
6Department of Physics, University of Arizona, Tucson, AZ 85721

7Division of Science, Penn State University Berks, Reading, PA 19610
8Maryland Center for Fundamental Physics, University of Maryland, College Park, 20742, USA

9Department of Physics and Astronomy, University of California, Los Angeles, CA 90095
10Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

11Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506
12Department of Physics, University of Virginia, Charlottesville, VA 22904

13Department of Physics, Duke University, Durham, NC 27708
14Department of Physics, Lebanon Valley College, Annville, Pennsylvania 17003

15Department of Physics, Old Dominion University, Norfolk, VA 23529
16Theory Center, Jefferson Lab, Newport News, Virginia 23606

17Department of Physics, William & Mary, Williamsburg, Virginia 23187
18Physics Department, Brookhaven National Laboratory, Upton, NY 11973

19Institute for Theoretical Physics, Tübingen University, 72076 Tübingen, Germany
20Department of Physics, University of Connecticut, Storrs, CT 06269

21Department of Physics, North Carolina State University, Raleigh, NC 27607
22Joint BNL-SBU Center for Frontiers in Nuclear Science at Stony Brook University, Stony Brook, NY 11794

23Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
24Physics Division, Argonne National Laboratory, Lemont, IL 60439

Abstract
This handbook provides a comprehensive review of transverse-momentum-dependent

parton distribution functions and fragmentation functions, commonly referred to as transverse
momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton
and other hadrons with respect to both their longitudinal and transverse momenta. They
provide unique insight into the internal momentum and spin structure of hadrons, and are a
key ingredient in the description of many collider physics cross sections. Understanding TMDs
requires a combination of theoretical techniques from quantum field theory, nonperturbative
calculations using lattice QCD, and phenomenological analysis of experimental data. The
handbook covers a wide range of topics, from theoretical foundations to experimental analyses,
as well as recent developments and future directions. It is intended to provide an essential
reference for researchers and graduate students interested in understanding the structure of
hadrons and the dynamics of partons in high energy collisions.

ar
X

iv
:2

30
4.

03
30

2v
1 

 [h
ep

-p
h]

  6
 A

pr
 2

02
3

471 PAGES

TMD collaboration, “TMD Handbook,” arXiv:2304.03302

http://www.arxiv.org/abs/2304.03302


TMD TABLES: QUARK, LEADING TWIST 6

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd



TMD TABLES: QUARK, LEADING TWIST 6

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

Sivers



TMD TABLES: QUARK, LEADING TWIST 6

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

Sivers Transversity



TMD TABLES: QUARK, LEADING TWIST 6

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

Sivers Transversity

‣ Very good knowledge of  
x dependence of f1 and g1L



TMD TABLES: QUARK, LEADING TWIST 6

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

Sivers Transversity

‣ Very good knowledge of  
x dependence of f1 and g1L

‣ Good knowledge of the  
kT dependence of f1 (also for 
pions)



TMD TABLES: QUARK, LEADING TWIST 6

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

Sivers Transversity

‣ Very good knowledge of  
x dependence of f1 and g1L

‣ Good knowledge of the  
kT dependence of f1 (also for 
pions)

‣ Fair knowledge of Sivers and 
transversity (mainly x 
dependence)



TMD TABLES: QUARK, LEADING TWIST 6

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

Sivers Transversity

‣ Very good knowledge of  
x dependence of f1 and g1L

‣ Good knowledge of the  
kT dependence of f1 (also for 
pions)

‣ Fair knowledge of Sivers and 
transversity (mainly x 
dependence)

‣ Some hints about all others



QUARK, SUBLEADING TWIST 7

quark pol.

U L T

nu
cl

eo
n

po
l.

U f� g� e h

L f�L g�L hL eL

T fT , f�T gT , g�T hT , h�T eT , e�T

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98) 
Bacchetta, Mulders, Pijlman, hep-ph/0405154 
Goeke, Metz, Schlegel, hep-ph/0504130 
 

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd



QUARK, SUBLEADING TWIST 7

quark pol.

U L T

nu
cl

eo
n

po
l.

U f� g� e h

L f�L g�L hL eL

T fT , f�T gT , g�T hT , h�T eT , e�T

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98) 
Bacchetta, Mulders, Pijlman, hep-ph/0405154 
Goeke, Metz, Schlegel, hep-ph/0504130 
 

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

‣ Lots of progress from the 
theory side



QUARK, SUBLEADING TWIST 7

quark pol.

U L T

nu
cl

eo
n

po
l.

U f� g� e h

L f�L g�L hL eL

T fT , f�T gT , g�T hT , h�T eT , e�T

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98) 
Bacchetta, Mulders, Pijlman, hep-ph/0405154 
Goeke, Metz, Schlegel, hep-ph/0504130 
 

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

‣ Lots of progress from the 
theory side

‣ Some knowledge of gT  

x-dependence



QUARK, SUBLEADING TWIST 7

quark pol.

U L T

nu
cl

eo
n

po
l.

U f� g� e h

L f�L g�L hL eL

T fT , f�T gT , g�T hT , h�T eT , e�T

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98) 
Bacchetta, Mulders, Pijlman, hep-ph/0405154 
Goeke, Metz, Schlegel, hep-ph/0504130 
 

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

‣ Lots of progress from the 
theory side

‣ Some knowledge of gT  

x-dependence

‣ First hints about e  
x-dependence



QUARK, SUBLEADING TWIST 7

quark pol.

U L T

nu
cl

eo
n

po
l.

U f� g� e h

L f�L g�L hL eL

T fT , f�T gT , g�T hT , h�T eT , e�T

Mulders-Tangerman, NPB 461 (96) 
Boer-Mulders, PRD 57 (98) 
Bacchetta, Mulders, Pijlman, hep-ph/0405154 
Goeke, Metz, Schlegel, hep-ph/0504130 
 

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

‣ Lots of progress from the 
theory side

‣ Some knowledge of gT  

x-dependence

‣ First hints about e  
x-dependence

‣ All others unknown



GLUONS, LEADING TWIST 8

gluon pol.

U L linear

nu
cl

eo
n

po
l.

U fg
1 h�g

1

L gg
1L h�g

1L

T f�g
1T gg

1T hg
1, h�g

1T

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

https://arxiv.org/abs/hep-ph/0009343


GLUONS, LEADING TWIST 8

gluon pol.

U L linear

nu
cl

eo
n

po
l.

U fg
1 h�g

1

L gg
1L h�g

1L

T f�g
1T gg

1T hg
1, h�g

1T

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

‣ Good knowledge of  
x-dependence of f1 and g1L

Mulders, Rodrigues, PRD63, 2001

https://arxiv.org/abs/hep-ph/0009343


GLUONS, LEADING TWIST 8

gluon pol.

U L linear

nu
cl

eo
n

po
l.

U fg
1 h�g

1

L gg
1L h�g

1L

T f�g
1T gg

1T hg
1, h�g

1T

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

‣ Good knowledge of  
x-dependence of f1 and g1L

‣ Some hints on the  
kT dependence of f1

Mulders, Rodrigues, PRD63, 2001

https://arxiv.org/abs/hep-ph/0009343


GLUONS, LEADING TWIST 8

gluon pol.

U L linear

nu
cl

eo
n

po
l.

U fg
1 h�g

1

L gg
1L h�g

1L

T f�g
1T gg

1T hg
1, h�g

1T

TMDs in black survive integration over transverse momentum 
TMDs in red are time-reversal odd

‣ Good knowledge of  
x-dependence of f1 and g1L

‣ Some hints on the  
kT dependence of f1

Mulders, Rodrigues, PRD63, 2001

https://arxiv.org/abs/hep-ph/0009343


QUARKS



TMDS IN DRELL-YAN PROCESSES 10

F 1
UU (xA, xB , q

2
T , Q

2)
<latexit sha1_base64="WKRDirKzg/iu2lFEqladh8BMThg="></latexit>

⇡

X

q

H
1q
UU (Q

2, µ2)

Z
d2k?A d2k?B fq

1

�
xA,k

2
?A;µ

2
�
f q̄
1

�
xB ,k

2
?B ;µ

2
�
�(2)

�
k?A � qT + k?B

�

=
X

q

H
1q
UU (Q

2, µ2)

Z
dbT bTJ0(bT |qT |)f̂

q
1

�
xA, b

2
T ;µ

2
�
f̂ q̄
1

�
xB , b

2
T ;µ

2
�

<latexit sha1_base64="ETPGQ+m9RFvm2g8EyrjrA2q1eIc="></latexit>

PB

nucleon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

PA

nucleon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

kA

kB

k⊥A

k⊥B
quark

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

quark
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

photon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

qTq

antiquark

TMD Parton  
Distribution Functions



TMDS IN DRELL-YAN PROCESSES 10

F 1
UU (xA, xB , q

2
T , Q

2)
<latexit sha1_base64="WKRDirKzg/iu2lFEqladh8BMThg="></latexit>

⇡

X

q

H
1q
UU (Q

2, µ2)

Z
d2k?A d2k?B fq

1

�
xA,k

2
?A;µ

2
�
f q̄
1

�
xB ,k

2
?B ;µ

2
�
�(2)

�
k?A � qT + k?B

�

=
X

q

H
1q
UU (Q

2, µ2)

Z
dbT bTJ0(bT |qT |)f̂

q
1

�
xA, b

2
T ;µ

2
�
f̂ q̄
1

�
xB , b

2
T ;µ

2
�

<latexit sha1_base64="ETPGQ+m9RFvm2g8EyrjrA2q1eIc="></latexit>

⇡

X

q

H
1q
UU (Q

2, µ2)

Z
d2k?A d2k?B fq

1

�
xA,k

2
?A;µ

2
�
f q̄
1

�
xB ,k

2
?B ;µ

2
�
�(2)

�
k?A � qT + k?B

�

=
X

q

H
1q
UU (Q

2, µ2)

Z
dbT bTJ0(bT |qT |)f̂

q
1

�
xA, b

2
T ;µ

2
�
f̂ q̄
1

�
xB , b

2
T ;µ

2
�

<latexit sha1_base64="ETPGQ+m9RFvm2g8EyrjrA2q1eIc=">AAAJU3icnVbfb9s2EFaTdku8eWu2x70cljpwECe11GYdEAxoPWDoBgxLUKfNEMYCJdG2ZlGSKapzyvLP3MNe92/sZUfaSS3FTYsREEHe3Xc/PvJoB3kSF7Lb/fvO2vrde598urHZ+Ozz5hdf3t/66mWRlSJkp2GWZOIsoAVL4pSdylgm7CwXjPIgYa+CyY9G/+o1E0WcpX15mbMLTkdpPIxDKlHkb6390wKAn3x1eqoHbnvmP+vM/F4HSMDVVPuqrwdeB04G3i40dgjNc5HNgBQl96dAOJXjkCbquZ7jlQtT3UbjDuGlhbQIgaaJgGOHTEsaAZExZwU0SJxKiAaeiTRBB6QPz9CFBtKpiXtW3EQ5DH13MCVBPLKZVqHekY0KRr1rzYe+chFLAiqwGL3A9TpV394RLANJpznPl0QskXSg2t6utro2euJwHRD2wQqQpj7swbKyZ2PtNkmapSUPmCBkp9m63sGciT34fcG79W54u+K9bwgw2ey9Y/m3eQG/DryHJ1dqLNJw3GjtNH54/6lUD8VgFhXaI4AA8zcf/OJ32yow5bx9d/5v8RjJmEo11BXyjaG9HnX64Mp6NfnvwbWWuWq0PkyR9fExJDX9+9vdg64dcHPhLhbbzmIc+1v3zkiUhSVnqQwTWhTnbjeXF4oKGYcJ0w1SFiyn4YSO2HkeDSWbdaLXcV6kFK92B5V2caFsf2pooSSCYSbwQ8atdNmHorwoLnmAlqaOoq4zwlW681IOv79QcZqXkqXhPNCwTEBmYJodoliwUCaXuKChiDF7CMdU0FDik9AgKfszzDinaaRIMtQ4saHUzapCjFAh4tFY6mpeQtBL3agax7FWsa7KmFasJopQFtVkWD5eliyJDBNZUtNKoRWmwaEvdE0V8NuAJvsRxU1NXsRGg/MNzSz4Q6uZr3r1QG/GWr3xx3VHUuNVrJWcF9rOcZKlFR0JsB/O3Qu1aEFsQl4gpUwd8lIvCemEBdns3N67B7aJSD6mqcy42na1fqBvONiveDBWHzD5P0Gsg1pFgpqCTK8lJKHpKGE2+hXEQwgRNC5MLLX/KJfmQpUJU92DJ2bjejhrcgS6uex3wqT1e/Qx4I4Nad8SgfY2idqhpAW2Mh4hOhYp9r8HjEM63+13Dw67uH1YSQFNV2Em15jHhysw+SpMfnucF6swL27HHK/CHN+OSVZhkhsY/FFpAccnIzNPCUKx4aEP5o9EWUDORA5pJu1fiKr/Pro26lrYvpWZNsG32K2/vDcXL70D99GBd/J4++l3i1d5w/nG+dZpO67zxHnqPHeOnVMnXP95PVufrV9u/LXx7+ba5t256dqdBeZrpzI2m/8BP2Ih9Q==</latexit>

The analysis is usually done in Fourier-transformed space

PB

nucleon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

PA

nucleon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

kA

kB

k⊥A

k⊥B
quark

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

quark
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

photon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

qTq

antiquark

TMD Parton  
Distribution Functions



TMDS IN DRELL-YAN PROCESSES 10

F 1
UU (xA, xB , q

2
T , Q

2)
<latexit sha1_base64="WKRDirKzg/iu2lFEqladh8BMThg="></latexit>

⇡

X

q

H
1q
UU (Q

2, µ2)

Z
d2k?A d2k?B fq

1

�
xA,k

2
?A;µ

2
�
f q̄
1

�
xB ,k

2
?B ;µ

2
�
�(2)

�
k?A � qT + k?B

�

=
X

q

H
1q
UU (Q

2, µ2)

Z
dbT bTJ0(bT |qT |)f̂

q
1

�
xA, b

2
T ;µ

2
�
f̂ q̄
1

�
xB , b

2
T ;µ

2
�

<latexit sha1_base64="ETPGQ+m9RFvm2g8EyrjrA2q1eIc="></latexit>

TMDs formally depend on two scales, but we set them equal.

⇡

X

q

H
1q
UU (Q

2, µ2)

Z
d2k?A d2k?B fq

1

�
xA,k

2
?A;µ

2
�
f q̄
1

�
xB ,k

2
?B ;µ

2
�
�(2)

�
k?A � qT + k?B

�

=
X

q

H
1q
UU (Q

2, µ2)

Z
dbT bTJ0(bT |qT |)f̂

q
1

�
xA, b

2
T ;µ

2
�
f̂ q̄
1

�
xB , b

2
T ;µ

2
�

<latexit sha1_base64="ETPGQ+m9RFvm2g8EyrjrA2q1eIc="></latexit>

The analysis is usually done in Fourier-transformed space

PB

nucleon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

PA

nucleon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

kA

kB

k⊥A

k⊥B
quark

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

quark
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

photon
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

qTq

antiquark

TMD Parton  
Distribution Functions



TMDS IN SEMI-INCLUSIVE DIS (SIDIS) 11

hadron

photon

proton

quarkq

P

Ph

p

kk⊥

k⊥

PhT

P⊥

∼zk⊥

TMD Parton  
Fragmentation Functions

TMD Parton  
Distribution Functions

FUU,T (x, z,P
2
hT , Q

2)

= x
X

q

H
q
UU,T (Q

2, µ2)

Z
d2k? d2P? fa

1

�
x,k2

?;µ
2
�
Da!h

1

�
z,P 2

?;µ
2
�
�
�
zk? � P hT + P?

�

= x
X

a

H
q
UU,T (Q

2, µ2)

Z
dbT bTJ0(bT |P h?|)f̂

q
1

�
x, z2b2?;µ

2
�
D̂a!h

1

�
z, b2?;µ

2
�

<latexit sha1_base64="h9rqXCZCgENLY5CIMvyMu3u99Rs="></latexit>



TMD STRUCTURE 12

see, e.g.,  Collins, “Foundations of Perturbative QCD” (11) 
TMD collaboration, “TMD Handbook,” arXiv:2304.03302 
 

4

expressed as a convolution over the partonic transverse momenta of two TMD PDFs:
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ā
1 (xB ,k

2
?B ;µ, ⇣B) �

(2)(k?A + k?B � qT )

=
xAxB

2⇡
HDY(Q,µ)

X

a

ca(Q
2)

ˆ +1

0
d|bT ||bT |J0

�
|bT ||qT |

�
f̂
a
1 (xA, b

2
T ;µ, ⇣A) f̂

ā
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:

xA =
Qp
s
e
y
, xB =

Qp
s
e
�y

. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by
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2
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, (9)

where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
DY, 1(|qT |i,f , yi,f , Qi,f ) =

 
|qT |f

|qT |i

d|qT |
ˆ yf

yi

dy

ˆ Qf
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d�

DY/Z

d|qT | dy dQ
, (10)

where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4

f̂
a
1

�
x, |bT |;µ, ⇣

�
=

ˆ
d
2k? e

ibT ·k? f
a
1

�
x,k2

?
;µ, ⇣

�

= 2⇡

ˆ
1

0
d|k?| |k?|J0(|bT ||k?|) fa

1

�
x,k2

?
;µ, ⇣

�
. (5)

The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
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3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html

f̂a
1 (x, b

2
T ;µf , ⇣f ) = [C ⌦ f1](x, µb⇤) e

R µf
µb⇤

dµ
µ

�
�F��K ln

p
⇣f
µ

� ✓p
⇣f

µb⇤

◆Kresum+gK

f1NP (x, b
2
T ; ⇣f , Q0) ,

<latexit sha1_base64="cI6SJEVqAQSixdopizjqBZ+NHnM="></latexit>

http://www.arxiv.org/abs/2304.03302


TMD STRUCTURE 12

see, e.g.,  Collins, “Foundations of Perturbative QCD” (11) 
TMD collaboration, “TMD Handbook,” arXiv:2304.03302 
 

4

expressed as a convolution over the partonic transverse momenta of two TMD PDFs:

F
1
UU

�
xA, xB , |qT |, Q

�

= xA xB HDY(Q,µ)
X

a

ca(Q
2)

ˆ
d
2k?A d

2k?B f
a
1 (xA,k

2
?A;µ, ⇣A) f

ā
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
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experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:
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The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
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symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html

nonperturbative part 
of TMD

f̂a
1 (x, b

2
T ;µf , ⇣f ) = [C ⌦ f1](x, µb⇤) e

R µf
µb⇤

dµ
µ

�
�F��K ln

p
⇣f
µ

� ✓p
⇣f

µb⇤

◆Kresum+gK

f1NP (x, b
2
T ; ⇣f , Q0) ,

<latexit sha1_base64="cI6SJEVqAQSixdopizjqBZ+NHnM=">AAAHVHicnVRfb9s2EJfbJem0pWvWx70QS1PEm+NJboMWCFYUKzAMCDC4aNIWMG2BkiibM/WnJNU5Ifhl+mn2uj0M2HfZw460VsSymw4jIOp4v/vdHXlHxhVnUgXBX50bNz/Z2t659an/2ee7t7+4s/flS1nWIqHnSclL8TomknJW0HPFFKevK0FJHnP6Kp4/s/irt1RIVhZn6qKi45xMC5axhChQRXudEzwjSmcmCifkcNGLo7PJ4ATndZT18CVVJMq66P73/ugZ7iFcKpZTCVIWhWOwtnY6jr4xXYR9OtEIs0JF+r3aTJycGYQzQRKdwspYlbHeYjY9xFOS5yT6ER2hRjy1EC9gbkhYvhFKN8mYJd2Ru8i68a0Ijj5k22TirLoTfQrpiRwJKuvcoG+n0anxDzD2D+4j/KYmqY/c9nQIv5+HBjaJlmeCGq899DwKuoD2/OjOftAP3EDrQtgI+14zhtHelofTMqlzWqiEEylHYVCpsSZCsYRT4+Na0ookczKloyrNFF300reskgWBc+8B6ISxdoU36AA0KcpKAV+hkNNe9aFJLuVFHoNlTtRMtjGr3ISNapU9HmtWVLWiRbIMlNUcqRLZLkIpEzRR/AIEkggG2aNkRqACCnrNxwX9NSmhmEWqMc+gDJxmyuyuAmIKgGDTmTKreQlBLoy/asyY0cys6qjRtKVKQZe2dLB9jeOSp/YkSt5ClTDadcSZMC0ozq8j2uxdx7b0klkE5jVkEf9i9CLSP7QDXc6MvoxmbUfK6LP2litp3Mx4WaxgOI6JGIVj7aNm4FzCkVJ9DPflipLMaVwuRq7v7mEgaVzNSKHKXO+Hxtwzaw6OVjxYq4+Y/J8gzkFrR4LYDdmbyzEnxZRTF/1fysC+I4IwaWPpoweVsg1Vc6qD/iO7CAcwG3yCzO5Vv3OqnN+T/0LuuZDuvRFg75JoFaWQcJWhhOBYFHD/B4jmqFiujoL+cQDL71ZSANNNnPl7zsPjDZxqE6e6Ps6LTZwX13OGmzjD6zl8E4evcZB9M8P2C7kuvBz0wwf9wfOH+0+fNK/nLe8r72vv0Au9R95T7ydv6J17Sedd57fO750/tv/c/nvn5s7W0vRGp+Hc9VbGzu1/AFzqezo=</latexit>

μb =
2e−γE

bT

μb* =
2e−γE

b̄*

f̂a
1 (x, b

2
T ;µf , ⇣f ) = [C ⌦ f1](x, µb⇤) e

R µf
µb⇤

dµ
µ

�
�F��K ln

p
⇣f
µ

� ✓p
⇣f

µb⇤

◆Kresum+gK

f1NP (x, b
2
T ; ⇣f , Q0) ,

<latexit sha1_base64="cI6SJEVqAQSixdopizjqBZ+NHnM="></latexit>

http://www.arxiv.org/abs/2304.03302


TMD GLOBAL FITS 13

Accuracy SIDIS 
HERMES

SIDIS 
COMPASS

DY fixed 
target DY collider N of points χ2/Npoints

Pavia 2017

arXiv:1703.10157 NLL ✔ ✔ ✔ ✔ 8059 1.55

SV 2019

arXiv:1912.06532 N3LL− ✔ ✔ ✔ ✔ 1039 1.06

MAP22

arXiv:2206.07598 N3LL− ✔ ✔ ✔ ✔ 2031 1.06

http://arxiv.org/abs/arXiv:1703.10157
http://www.arxiv.org/abs/1912.06532
https://arxiv.org/abs/2206.07598


x-Q2 COVERAGE 14

Scimemi, Vladimirov, 
arXiv:1912.06532

MAP Collaboration 
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, 
Piacenza, Radici, Signori, arXiv:2206.07598

PHENIX

E288
E605
E772

LHCb
CDF, D0

ATLAS
CMS

ATLAS(116<Q<150)

ATLAS(46<Q<66)

HERMES

COMPASS

Total:
457 DY points
582 SIDIS points

10-4 10-3 10-2 10-1 1

1

10

30

60

100

150

10-4 10-3 10-2 10-1 1

1

10

30

60

100

150

x

Q
[G

e
V
]

Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

The kinematic region in x and Q covered by the data set and thus contributing to the deter-
mination of TMDPDF is shown in fig. 5. The boxes enclose the sub-regions covered by the single
data sets. Looking at fig. 5, it is possible to distinguish two main clusters of data: the “low-energy
experiments”, i.e. E288, E605, E772, PHENIX, COMPASS and HERMES that place themselves
at invariant-mass energies between 1 and 18 GeV, and the “high-energy experiments”, i.e. all those
from Tevatron and LHC, that are instead distributed around the Z-peak region. From this plot we
observe that, kinematic ranges of SIDIS and DY data do not overlap.

As a final comment of this section let us mention that our data selection is particularly conser-
vative because it drops points that could potentially be described by TMD factorization (see e.g.
ref. [18] where a less conservative choice of cuts is used). However, our fitted data set guarantees
that we operate well within the range of validity of TMD factorization. In sec. 7 we show that
unexpectedly our extraction can describe a larger set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to extract
valuable information for the TMD extraction, one has to detail the methodology that has been
followed, and this is the purpose of this section. Finally, we also provide a suitable definition of the
�2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, (part of) HERMES (isoscalar targets) come
from nuclear target processes. In these cases, we perform the iso-spin rotation of the corresponding
TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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The kinematic region in x and Q covered by the data set and thus contributing to the deter-
mination of TMDPDF is shown in fig. 5. The boxes enclose the sub-regions covered by the single
data sets. Looking at fig. 5, it is possible to distinguish two main clusters of data: the “low-energy
experiments”, i.e. E288, E605, E772, PHENIX, COMPASS and HERMES that place themselves
at invariant-mass energies between 1 and 18 GeV, and the “high-energy experiments”, i.e. all those
from Tevatron and LHC, that are instead distributed around the Z-peak region. From this plot we
observe that, kinematic ranges of SIDIS and DY data do not overlap.

As a final comment of this section let us mention that our data selection is particularly conser-
vative because it drops points that could potentially be described by TMD factorization (see e.g.
ref. [18] where a less conservative choice of cuts is used). However, our fitted data set guarantees
that we operate well within the range of validity of TMD factorization. In sec. 7 we show that
unexpectedly our extraction can describe a larger set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to extract
valuable information for the TMD extraction, one has to detail the methodology that has been
followed, and this is the purpose of this section. Finally, we also provide a suitable definition of the
�2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, (part of) HERMES (isoscalar targets) come
from nuclear target processes. In these cases, we perform the iso-spin rotation of the corresponding
TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark
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A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

http://arxiv.org/abs/arXiv:1912.06532
http://arxiv.org/abs/arXiv:2206.07598
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FIG. 12: Graphical representation of the correlation matrix for the fitted parameters.
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FIG. 13: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 2 GeV (left panel) and 10 GeV (right panel) as

a function of the partonic transverse momentum |k?| for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the
68% CL.

Fig. 3). Future data from the Electron-Ion Collider (EIC) are expected to play an important role in getting a
better description of the TMD PDFs at low x [107, 108].

In Fig. 14, we show the TMD FF for the up quark fragmenting into a ⇡
+ at µ =

p
⇣ = Q = 2 GeV (left

panel) and 10 GeV (right panel) as a function of the pion transverse momentum |P?| (with respect to the
fragmenting quark axis) for two di↵erent values of z = 0.3 and 0.6. As in the previous figure, the uncertainty
bands correspond to the 68% CL. In both left and right panels, an additional structure clearly emerges at
intermediate P?, especially at z = 0.3, which is induced by the weighted Gaussian in Eq. (39). Further
investigations on this topic are needed, and data from electron-positron annihilations would be valuable to
better explore these features.

We stress that the error bands displayed in Figs. 13-14 reflect the uncertainty on the fitted parameters (see
Eqs. (38)-(39)) that are determined by taking into account the uncertainty on the collinear PDFs and FFs as
discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.
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In Fig. 14, we show the TMD FF for the up quark fragmenting into a ⇡
+ at µ =

p
⇣ = Q = 2 GeV (left

panel) and 10 GeV (right panel) as a function of the pion transverse momentum |P?| (with respect to the
fragmenting quark axis) for two di↵erent values of z = 0.3 and 0.6. As in the previous figure, the uncertainty
bands correspond to the 68% CL. In both left and right panels, an additional structure clearly emerges at
intermediate P?, especially at z = 0.3, which is induced by the weighted Gaussian in Eq. (39). Further
investigations on this topic are needed, and data from electron-positron annihilations would be valuable to
better explore these features.

We stress that the error bands displayed in Figs. 13-14 reflect the uncertainty on the fitted parameters (see
Eqs. (38)-(39)) that are determined by taking into account the uncertainty on the collinear PDFs and FFs as
discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.
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FIG. 2. Comparison of CS kernels extracted from differ-

ent combinations of the pseudo-data. The top plot shows all

possible (twelve) combinations of pseudo-data with different

kinematics, listed in the table I. The bottom plot show ex-

tractions made with different input collinear PDFs. The solid

lines are the central values. The shaded areas are the statis-

tical uncertainty. The oscillations at b ⇠ 4� 6GeV
�1

are due

to the finite bin size in the qT -space. The gray dashed line in

the lower plot shows the effect of incomplete cancellation of

parton’s momentum if PDFs in the comparing cross-section

are different (here, CT18 vs. CASCADE).

tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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SUPPLEMENTAL MATERIALS

Renormalization

In order to renormalize the bare quasi-TMD matrix
elements, the square root of Wilson loop

p
ZE and loga-

rithmic divergence factor ZO need to be computed.
The Wilson loop ZE(r = 2L+z, b?, a) is defined as the

vacuum expectation of a rectangular shaped space-like
gauge links with size r⇥b?. It is introduced to eliminate
the linear divergence form as e��m̄r, which comes from
the self-energy corrections of the gauge link [28, 34], as
well as the pinch-pole singularity, which comes from the
heavy quark e↵ective potential term e�V (b?)L from the
interactions between the two Wilson lines along the z
direction in the staple link [20]. In practice, the signal
to noise ratio of ZE(r, b?, a) grows fast and is hardly
available at large r and/or b?. To address this, we fit the
e↵ective energies of Wilson loop, which denote the QCD
static potentials, and then extrapolate them at large r
and/or b? area, as in Ref. [27]. Numerical results of
Wilson loop are shown in the upper panel of Fig. 6.

Besides, the logarithmic divergences factor ZO can be
extracted from the zero-momentum bare matrix elements
h̃0
� (z, b?, 0, a, L). In order to keep the renormalized ma-

trix elements consistent with perturbation theory, ZO

should be determined with the condition:

ZO(1/a, µ,�) = lim
L!1

h̃0
� (z, b?, 0, a, L)p

ZE (2L+ z, b?, a)h̃MS
� (z, b?, µ)

(12)

in a specific window where z ⌧ ⇤�1
QCD so that the

perturbation theory works well. Here the perturbation
results have been evolved from the intrinsic physical
scale 2e��E/

p
z2 + b2? to MS scale µ via renormalization

group equation [44]. To preserve a good convergence of
the perturbation theory before and after RG evolution,
we choose the region where b? = a, z = 0 or a. More
discussions about RG evolution can be found in the fol-
lowing section. The numerical value for ZO in this work
is taken as 1.0622(87), of which the uncertainty is negli-
gible compared with other systematic uncertainties.

LPC collaboration, arxiv:2211.02340

TMD pheno
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Figure 6. Plot of the Collins-Soper kernel at µ = 2 GeV. Di↵erent lines correspond to the independent

extractions CASCADE [81], SV19 [8], MAP22 [9], and ART23 (this work).

Figure 7. Shape of TMDs in the (x,b)-space. The color indicates the uncertainty.

Namely, they almost vanish at their lower boundary. For negligible values of �’s the b�profile
of the corresponding TMDPDF flattens. This is a clearly non-physical behavior, which results in
disturbed shapes of the uncertainty bands for d̄ and sea flavors at large-b. Simultaneously, it does
not produce any problem in the prediction for the cross-section, since the TMDPDFs contributes
in products with the evolution factors. It merely indicates that the present observables/data are
not restrictive enough for these flavor combinations.

The shapes of the TMDPDFs are shown in fig. 7 for u and d quarks (other flavors show similar
behaviour). The sizes of the uncertainty bands are shown in fig. 8 in comparison to the SV19 bands.
Generally, the uncertainty bands are increased by an order of magnitude, and grow faster with the
increase of b. This is the result of incorporating the PDF uncertainties, which helps to avoid the
PDF-bias and allows for a more realistic uncertainty estimation. The x-shape of the uncertainties
has become more involved. Their minimum is at x ⇠ 10�2, where the most precise data are
located. The sizes of quark- and anti-quark uncertainties are compatible, because most part of the
data depend on the product f1qf1q̄ that does not distinguish between quarks and anti-quarks.
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What happens if we include spin?
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ρq
N↑(x, kx, ky; Q2) = f q

1 (x, k2
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In a nucleon polarized in the +y direction,  
the distribution of quarks can be distorted in the x direction 
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Figure 1: The first transverse moment x f?(1)
1T of the Sivers TMD as a function of x for the up (upper panel) and down quark (lower panel). Solid

band: the 68% confidence interval obtained in this work at Q2 = 4 GeV2. Hatched bands from PV11 [14], EIKV [16], TC18 [17] and at di↵erent
Q2 as indicated in the figure.

level only if the observable’s values follow a Gaussian distribution, which is not true in general. When it is not possible
to draw uncertainty bands, we report the results obtained using replica 105, which was selected as a representative
replica, since its parameters are closer to the average ones both in the unpolarized and polarized case.

We obtain an excellent agreement between the experimental measurements and our theoretical prediction, with an
overall value of �2/d.o.f.= 1.08 ± 0.06 (total �2 = 110 ± 6). Our parametrization is able to describe very well the
COMPASS 2009 data set (32 points with �2 = 28.3 ± 3.1), the COMPASS 2017 data set (50 points with �2 = 29.3 ± 4.9),
and the JLab data set (6 points with �2 = 3.8± 0.5). The agreement with the HERMES data set is worse (30 points with
�2 = 49.8± 4.8). We checked that the largest contribution to the �2 comes from the subset of data with K� in the final
state [36]. Our predictions well describe also the z and PhT distributions, even if those projections of the data were
not included in the fit. (More information about the fit procedure, the best-fit parameters and the agreement with data
can be found in App. Appendix B.)

In Fig. 1, we show the first transverse moment x f?(1)
1T (Eq. (5), multiplied by x) as a function of x at Q0 =

2 GeV2 for the up (upper panel) and down quark (lower panel). We compare our results (solid band) with other
parametrizations available in the literature [14, 16, 17] (hatched bands, as indicated in the figure). In agreement with
previous studies, the distribution for the up quark is negative, while for the down quark is positive and both have a
similar magnitude. The Sivers function for sea quarks is very small and compatible with zero.

In general, the result of a fit is biased whenever a specific fitting functional form is chosen at the initial scale. In
our case, we tried to reduce this bias by adopting a flexible functional form, as it is evident particularly in Eq. (8).
Nevertheless, we stress that our extraction is still a↵ected by this bias and extrapolations outside the range where data
exist (0.01 . x . 0.3) should be taken with due care. At variance with other studies, in the denominator of the
asymmetry in Eq. (10) we are using unpolarized TMDs that were extracted from data in our previous Pavia17 fit, with
their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent the most realistic estimate that we can
currently make on the statistical error of the Sivers function.

In Fig. 2, we show the density distribution ⇢a
p" of unpolarized quarks in a transversely polarized proton defined in

Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving

4

Bacchetta, Delcarro,  
Pisano, Radici, arXiv:2004.14278

Echevarria, Kang, Terry, 
arXiv:2009.10710

(a) (b)

(c) (d)

Figure 19. Qiu-Sterman function at µ = 10GeV for different quark flavors, derived from the Sivers
function (4.11). Our results are labeled as BPV20. The black line shows the CF value. Blue band shows
68%CI without gluon contribution added. The green band shows the band obtained by adding the gluon
contribution estimated to be G

(+) = ±|Td + Tu| as described in the text. Our results are compared
to JAM20 [30] (gray dashed line with the error corridor hatched), PV20 [29] (magenta hatched region),
ETK20 [31] (violet hatched region, dashed line).

4.6 Analysis of the sign change

The sign-change of the Sivers function (2.3) is one of the principal predictions of the TMD factoriza-
tion theorem. It follows from the nontrivial shape of the gauge-link contour within TMD operators
(2.1) and would be absent in the case of a straight gauge link. Here, we attempt to estimate the
significance of the sign-change.
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4.6 Analysis of the sign change

The sign-change of the Sivers function (2.3) is one of the principal predictions of the TMD factoriza-
tion theorem. It follows from the nontrivial shape of the gauge-link contour within TMD operators
(2.1) and would be absent in the case of a straight gauge link. Here, we attempt to estimate the
significance of the sign-change.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105.

towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks, because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are approximately (kx)max ⇡ 0.1 GeV for up quarks and �0.15
GeV for down quarks. To have a feeling of the order of magnitude of this distortion, we can estimate the expression
eq/(kx)max ⇡ 2⇥10�34C⇥m ⇡ 0.6⇥10�4 debye, which is about 3⇥10�5 times the electric dipole of a water molecule.

The existence of this distortion requires two ingredients. First of all, the wavefunction describing quarks inside the
proton must have a component with nonvanishing angular momentum. Secondly, e↵ects due to final state interactions
should be present [37], which in Feynman gauge can be described as the exchange of Coulomb gluons between the
quark and the rest of the proton [38]. In simplified models [39], it is possible to separate these two ingredients and
obtain an estimate of the angular momentum carried by each quark [40]. It turns out that up quarks give almost
50% contribution to the proton’s spin, while all other quarks and antiquarks give less than 10% [14]. We will leave
this model-dependent study to a future publication. A model-independent estimate of quark angular momentum
requires the determination of parton distributions that depend simultaneously on momentum and position [41, 42].

5

Q= 2GeV

Bacchetta, Delcarro,  
Pisano, Radici, 
arXiv:2004.14278

https://arxiv.org/abs/2004.14278


3D STRUCTURE IN MOMENTUM SPACE 26

Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105.
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distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
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At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks, because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are approximately (kx)max ⇡ 0.1 GeV for up quarks and �0.15
GeV for down quarks. To have a feeling of the order of magnitude of this distortion, we can estimate the expression
eq/(kx)max ⇡ 2⇥10�34C⇥m ⇡ 0.6⇥10�4 debye, which is about 3⇥10�5 times the electric dipole of a water molecule.

The existence of this distortion requires two ingredients. First of all, the wavefunction describing quarks inside the
proton must have a component with nonvanishing angular momentum. Secondly, e↵ects due to final state interactions
should be present [37], which in Feynman gauge can be described as the exchange of Coulomb gluons between the
quark and the rest of the proton [38]. In simplified models [39], it is possible to separate these two ingredients and
obtain an estimate of the angular momentum carried by each quark [40]. It turns out that up quarks give almost
50% contribution to the proton’s spin, while all other quarks and antiquarks give less than 10% [14]. We will leave
this model-dependent study to a future publication. A model-independent estimate of quark angular momentum
requires the determination of parton distributions that depend simultaneously on momentum and position [41, 42].
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Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.
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where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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Figure 1. The cross section in eq. (4.2) integrated over all rapidity range with artemide2.01 at NNLO
and PYTHIA. The errors of PYTHIA are included, although not clearly visible. The shaded area shows
the variation band in µ̃, see eq. (3.18).

Figure 2. (left) The lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01. The shaded area shows
the variation band in µ̃, see eq. (3.18). (right) Comparison of Higgs-production cross-section with variation
band to the measurement presented in [68] by CMS collaboration.

non-perturbative function for quarks extracted from a fit of Drell-Yan and Z-boson production data
using artemide2.01. The details of this fit have been illustrated in ref. [21, 22], and this version
of the code takes into account the improvements coming from ref. [65]. The TMD evolution kernel
for gluons should be also provided by a non-perturbative part at large value of b, whose precise
analytical form is given in [22]. The perturbative calculable parts of the evolution kernel differ
in quark and gluon case (at the order that we work) by the Casimir scaling factor CA/CF . Here
we have assumed the same scaling for the un-calculable non-perturbative pieces of the evolution
kernel. The error band of our prediction come from scale variations of a factor of 2, consistently
with ⇣-prescription [19].

In order to check the viability of the model assumptions we have compared the cross section
in eq. (4.2), integrated in rapidity, with PYTHIA [66, 67]. The agreement of our prediction at
NNLO and PYTHIA is shown in fig. 1 and it is extremely good in the range of qT where the TMD
factorization theorem is expected to hold. In that figure we have also included the error provided
by PYTHIA, although it is not clearly visible.

In fig. 2 (left) we have plotted lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01 at
NLO and at NNLO. The NNLO includes the perturbative correction to the first non-trivial order
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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Figure 1. The cross section in eq. (4.2) integrated over all rapidity range with artemide2.01 at NNLO
and PYTHIA. The errors of PYTHIA are included, although not clearly visible. The shaded area shows
the variation band in µ̃, see eq. (3.18).

Figure 2. (left) The lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01. The shaded area shows
the variation band in µ̃, see eq. (3.18). (right) Comparison of Higgs-production cross-section with variation
band to the measurement presented in [68] by CMS collaboration.

non-perturbative function for quarks extracted from a fit of Drell-Yan and Z-boson production data
using artemide2.01. The details of this fit have been illustrated in ref. [21, 22], and this version
of the code takes into account the improvements coming from ref. [65]. The TMD evolution kernel
for gluons should be also provided by a non-perturbative part at large value of b, whose precise
analytical form is given in [22]. The perturbative calculable parts of the evolution kernel differ
in quark and gluon case (at the order that we work) by the Casimir scaling factor CA/CF . Here
we have assumed the same scaling for the un-calculable non-perturbative pieces of the evolution
kernel. The error band of our prediction come from scale variations of a factor of 2, consistently
with ⇣-prescription [19].

In order to check the viability of the model assumptions we have compared the cross section
in eq. (4.2), integrated in rapidity, with PYTHIA [66, 67]. The agreement of our prediction at
NNLO and PYTHIA is shown in fig. 1 and it is extremely good in the range of qT where the TMD
factorization theorem is expected to hold. In that figure we have also included the error provided
by PYTHIA, although it is not clearly visible.

In fig. 2 (left) we have plotted lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01 at
NLO and at NNLO. The NNLO includes the perturbative correction to the first non-trivial order
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Fig. 3 (a) The normalised PQQT -spectrum for J/ -pair production
at M  = 8 GeV using two gluon TMDs. The first is a Gaussian Ansatz
with hk 2

T i = 3.3 ± 0.8 GeV2 obtained from the LHCb data [30] (the
red curve shows the central value and the gray band the associated
uncertainty). The second is the result of our present study with TMD
evolution. The green band results from the uncertainty on the bT -width
of the nonperturbative Sudakov factor SNP. The estimated DPS contri-
bution has been subtracted from the LHCb data (black crosses) which
were also normalized over the interval. (b) The PQQT -spectrum using
our evolved gluon TMDs at MQQ = 12, 20 and 30 GeV for the same
uncertainty on the bT -width.

function generated by the angular integral and the weights.
Because h̃

? g
1 is of order ↵s, it is naturally suppressed in

comparison to f
g
1 . Moreover, ↵s(µb) is growing with bT

(up to its bound ↵s(b0/bT max)) and h̃
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1 is also broader

in bT than f
g
1 . The presence of h̃

? g
1 in a given convolu-

tion therefore contributes to reduce the magnitude of the
integrand, and to its bT -broadening. These effects con-
tribute to strongly suppress C

h
w2 h

? g
1 h

? g
1

i
with respect to

C

h
f

g
1 f

g
1

i
. C

h
w2 h

? g
1 h

? g
1

i
is of order ↵2

s and its integrand
is significantly broadened in bT , meaning it falls faster than
C

h
f

g
1 f

g
1

i
with increasing PQQT . Indeed, as a consequence

of the bT -broadening, more oscillations of the J0 Bessel
function occur in the integrand of C

h
w2 h

? g
1 h

? g
1

i
than of

C

h
f

g
1 f

g
1

i
, before being dampened by the Sudakov factors at

large bT . Each additional oscillation in the integrand brings
the convolution value closer to zero. More oscillations are
packed in a given bT -range when PQQT increases, widen-
ing the gap between the two convolutions, and effectively
making the ratio fall with PQQT . This additional effect
renders the F2 C
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term truly negligible in the

cross-section for J/ -pair production. It also means that in
other processes where the hard-scattering coefficient F2 may
be large, the convolution itself would remain relatively small
at scales larger than a few GeV. Besides, its influence on the
cross-section will be strongest at the smallest TM.

The situation is different for the azimuthal asymme-
tries, which involve convolutions in the numerator that con-
tain either the J2 or J4 Bessel functions. Such functions
are 0 at bT =0 and then grow in magnitude. The conse-
quence is that the bT -integrals containing such functions
benefit from unsuppressed intermediate bT values. At some
point, undampened large-bT oscillations will bring the inte-
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J2 and J4 tend slower toward 0 than the J0 one with in-
creasing bT . The consequence is that C
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Hence the convolution ratios, and the azimuthal asymme-
tries, always grow with PQQT , as can be seen in Fig. 4. In
addition, as the large bT values are less suppressed than in
C

h
f

g
1 f

g
1

i
, the azimuthal asymmetries are also more sensi-

tive to the variations of the nonperturbative Sudakov SNP.
The effect is more pronounced for C

h
w4 h

? g
1 h

? g
1

i
since it

contains h̃? g
1 twice and a broader Bessel function.

Fig. 4b displays the cos(2�CS) asymmetry as a func-
tion of PQQT in the forward single J/ rapidity region
(larger cos(✓CS)) while 4c displays the cos(4�CS) asym-
metry in the central rapidity region (small cos(✓CS) with
x1 ' x2). Such choices maximize the size of the asymme-
tries as the associated hard-scattering coefficients are larger
in these regions, without modifying the shapes of the asym-
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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Figure 1. The cross section in eq. (4.2) integrated over all rapidity range with artemide2.01 at NNLO
and PYTHIA. The errors of PYTHIA are included, although not clearly visible. The shaded area shows
the variation band in µ̃, see eq. (3.18).

Figure 2. (left) The lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01. The shaded area shows
the variation band in µ̃, see eq. (3.18). (right) Comparison of Higgs-production cross-section with variation
band to the measurement presented in [68] by CMS collaboration.

non-perturbative function for quarks extracted from a fit of Drell-Yan and Z-boson production data
using artemide2.01. The details of this fit have been illustrated in ref. [21, 22], and this version
of the code takes into account the improvements coming from ref. [65]. The TMD evolution kernel
for gluons should be also provided by a non-perturbative part at large value of b, whose precise
analytical form is given in [22]. The perturbative calculable parts of the evolution kernel differ
in quark and gluon case (at the order that we work) by the Casimir scaling factor CA/CF . Here
we have assumed the same scaling for the un-calculable non-perturbative pieces of the evolution
kernel. The error band of our prediction come from scale variations of a factor of 2, consistently
with ⇣-prescription [19].

In order to check the viability of the model assumptions we have compared the cross section
in eq. (4.2), integrated in rapidity, with PYTHIA [66, 67]. The agreement of our prediction at
NNLO and PYTHIA is shown in fig. 1 and it is extremely good in the range of qT where the TMD
factorization theorem is expected to hold. In that figure we have also included the error provided
by PYTHIA, although it is not clearly visible.

In fig. 2 (left) we have plotted lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01 at
NLO and at NNLO. The NNLO includes the perturbative correction to the first non-trivial order
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Fig. 3 (a) The normalised PQQT -spectrum for J/ -pair production
at M  = 8 GeV using two gluon TMDs. The first is a Gaussian Ansatz
with hk 2

T i = 3.3 ± 0.8 GeV2 obtained from the LHCb data [30] (the
red curve shows the central value and the gray band the associated
uncertainty). The second is the result of our present study with TMD
evolution. The green band results from the uncertainty on the bT -width
of the nonperturbative Sudakov factor SNP. The estimated DPS contri-
bution has been subtracted from the LHCb data (black crosses) which
were also normalized over the interval. (b) The PQQT -spectrum using
our evolved gluon TMDs at MQQ = 12, 20 and 30 GeV for the same
uncertainty on the bT -width.

function generated by the angular integral and the weights.
Because h̃
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1 is of order ↵s, it is naturally suppressed in

comparison to f
g
1 . Moreover, ↵s(µb) is growing with bT

(up to its bound ↵s(b0/bT max)) and h̃
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1 is also broader

in bT than f
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1 . The presence of h̃
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tion therefore contributes to reduce the magnitude of the
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with increasing PQQT . Indeed, as a consequence

of the bT -broadening, more oscillations of the J0 Bessel
function occur in the integrand of C
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than of
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, before being dampened by the Sudakov factors at

large bT . Each additional oscillation in the integrand brings
the convolution value closer to zero. More oscillations are
packed in a given bT -range when PQQT increases, widen-
ing the gap between the two convolutions, and effectively
making the ratio fall with PQQT . This additional effect
renders the F2 C

h
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1 h
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1

i
term truly negligible in the

cross-section for J/ -pair production. It also means that in
other processes where the hard-scattering coefficient F2 may
be large, the convolution itself would remain relatively small
at scales larger than a few GeV. Besides, its influence on the
cross-section will be strongest at the smallest TM.

The situation is different for the azimuthal asymme-
tries, which involve convolutions in the numerator that con-
tain either the J2 or J4 Bessel functions. Such functions
are 0 at bT =0 and then grow in magnitude. The conse-
quence is that the bT -integrals containing such functions
benefit from unsuppressed intermediate bT values. At some
point, undampened large-bT oscillations will bring the inte-
gral value down toward 0 in a similar way as for C
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does. Another crucial difference is that the envelopes of
J2 and J4 tend slower toward 0 than the J0 one with in-
creasing bT . The consequence is that C
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and
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with PQQT .

Hence the convolution ratios, and the azimuthal asymme-
tries, always grow with PQQT , as can be seen in Fig. 4. In
addition, as the large bT values are less suppressed than in
C

h
f

g
1 f

g
1

i
, the azimuthal asymmetries are also more sensi-

tive to the variations of the nonperturbative Sudakov SNP.
The effect is more pronounced for C

h
w4 h

? g
1 h

? g
1

i
since it

contains h̃? g
1 twice and a broader Bessel function.

Fig. 4b displays the cos(2�CS) asymmetry as a func-
tion of PQQT in the forward single J/ rapidity region
(larger cos(✓CS)) while 4c displays the cos(4�CS) asym-
metry in the central rapidity region (small cos(✓CS) with
x1 ' x2). Such choices maximize the size of the asymme-
tries as the associated hard-scattering coefficients are larger
in these regions, without modifying the shapes of the asym-
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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II. DESCRIPTION OF THE MODEL

In Ref. [28] we proposed a model to compute gluon TMDs, based on the assumption that a nucleon can emit a gluon,
and what remains after the emission is treated as a single spectator particle (see Fig. 1). This spectator particle is
considered to be on-shell, but its mass is allowed to take a continuous range of values, described by a spectral function.
The nucleon-gluon-spectator coupling is described by an e↵ective vertex containing two form factors. Such model can
e↵ectively reproduce the standard collinear gluon PDFs, unpolarized and polarized, and can be used to compute all
T-even TMDs.

T-odd gluon TMDs vanish at tree level, because there is no residual interaction between the active quark and the
spectator; equivalently, there is no interference between two competing channels producing the complex amplitude
whose imaginary part gives the T-odd contribution. We can generate such structures by considering the interference
between the tree-level scattering amplitude and the two-gluon-exchange scattering amplitudes, as shown in Fig. 2.
This corresponds to the one-gluon-exchange approximation of the gauge link operator. As we shall discuss in detail,
the exact form of the gauge link depends on the process and leads also to two di↵erent types of functions.

P

p

P � p

⌫µ

Figure 1. Tree-level cut diagram for the calculation of T-even leading-twist gluon TMDs. The triple line represents the spin- 12
spectator. The red blob represents the nucleon-gluon-spectator vertex.

A. Tree-level scattering amplitude

Following Ref. [28], we work in the frame where the nucleon momentum P has no transverse component:

P =


M

2

2P+
, P

+
, 0

�
, (1)

where M is the nucleon mass. The parton momentum is parametrized as

p =


p
2 + p2

T

2xP+
, xP

+
, pT

�
, (2)

where evidently x = p
+
/P

+ is the light-cone (longitudinal) momentum fraction carried by the parton.
In the spectator-model framework one assumes that the nucleon in the state |P, Si can split into a gluon with

momentum p and other remainders, e↵ectively treated as a single spin- 12 spectator particle with momentum P � p

and mass MX . Similarly to Refs. [22, 28], we define a “tree-level” correlator as (see Fig. 1)1

�µ⌫(0)(x,pT , S) =
1

(2⇡)3 2 (1� x)P+
Tr

"
(/P +M)

1 + �
5/S

2
G

⇤⌫�(p, p)Y†ab
�

�
p
2
�
(/P � /p+MX)Yba

⇢ (p2)Gµ⇢(p, p)

#
, (3)

where a, b are color indices (in the adjoint representation) and [Check which one we actually used! The original

formula comes from Fig. 7.12 of Collins’s book, which is identical to the one in Ref. [29]. However,

1 We remark that in Ref. [28] there is an error in the position of the Y vertices and a typo in the definition of the Gµ⇢ propagator.
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that the output of the fit selects the option a � b < 0, which corresponds to a spectral function 0  ⇢(MX) < 0.5
asymptotically vanishing for very large spectator masses MX (see Fig. 2). Therefore, we deduce that the positivity
bound fulfilled by F̂ g in the right handside of Eq. (17) (when corresponding to the polarized TMDs of Eqs. (13)-(15))
is maintained through the integral also for the actual gluon TMDs on the left handside.
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FIG. 3. The xfg
1 (left panel) and xgg1 (right panel) as functions of x at Q0 = 1.64 GeV. Lighter band with red dashed borders

for the NNPDF3.1sx parametrization of xfg
1 [78] and the NNPDFpol1.1 parametrization of xgg1 [79]. Green band for the 68%

uncertainty band of the spectator model fit. Solid black line for the result of the replica 11.

In Fig. 3, we show the results of our simultaneous fit of xfg
1 (x) (left panel) and xgg1(x) (right panel) atQ0 = 1.64 GeV.

The lighter band with red dashed borders identifies the NNPDF3.1sx parametrization of xfg
1 [78] and the NNPDFpol1.1

parametrization of xgg1 [79]. The green band is the 68% uncertainty band of our fit. The solid black line represents
the result of replica 11. The right panel shows that our gluon helicity at most diverges more slowly than 1/x. On
the one side, this feature can ben considered as a rigidity of the model. On the other side, it can be considered as
a prediction. In any case, we verified that it is important to perform a simultaneous fit of both the unpolarized and
helicity gluon PDFs. Bounding the model parameters only to fg

1 (x) is not enough to get a reliable x-behavior of the
model.

IV. RESULTS

With the parameters in Tab. I, the second Mellin moment of our model PDF fg
1 (x,Q0), i.e., the nucleon momentum

fraction carried by the gluons at the model scale Q0 = 1.64 GeV, turns out to be

hxig =

Z 1

0
dx x fg

1 (x,Q0) = 0.424± 0.009 . (18)

This result is in excellent agreement with the latest lattice calculation hxig = 0.427(92) obtained at the scale 2
GeV [81]. The first Mellin moment of the model PDF gg1(x) gives the contribution of the gluon helicity to the nucleon
spin. In our model, it turns out to be Sg = 1

2 h1i�g = 0.159± 0.011 at Q0 = 1.64 GeV, to be compared with the latest
lattice estimate of the gluon total angular momentum hJig = 0.187(46) at the scale 2 GeV [81].

In Fig. 4, we show our model results for T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001

(right panels) at the same scale Q0 = 1.64 GeV as in Fig. 3, i.e., without evolution e↵ects. Again, the green band
refers to the 68% statistical uncertainty, and the solid black line indicates the result of the best replica 11. From top
to bottom, the panels refer to the unpolarized xfg

1 (x,p
2
T ), the helicity xgg1L(x,p

2
T ), the worm-gear xgg1T (x,p

2
T ), and

the Boer–Mulders xh?g
1 (x,p2

T ). Each TMD shows a distinct pattern both in x and p2
T . In particular, the unpolarized

xfg
1 (x,p

2
T ) clearly shows a non-Gaussian shape in p2

T with a large flattening tail for p2
T ! 1 GeV. Moreover, for

p2
T ! 0 it reaches a very small but non-vanishing value, suggesting that the gluon wave function has a significant

component with orbital angular momentum L = 1 3. The information underlying these plots largely expands the one
contained in Fig. 3 and can be a useful guidance in explorations of the full 3D dynamics of gluons.

3 This result would change if the spectator were a particle with spin di↵erent from 1
2 .

Reproduces collinear gluon PDFs

3

II. DESCRIPTION OF THE MODEL

In Ref. [28] we proposed a model to compute gluon TMDs, based on the assumption that a nucleon can emit a gluon,
and what remains after the emission is treated as a single spectator particle (see Fig. 1). This spectator particle is
considered to be on-shell, but its mass is allowed to take a continuous range of values, described by a spectral function.
The nucleon-gluon-spectator coupling is described by an e↵ective vertex containing two form factors. Such model can
e↵ectively reproduce the standard collinear gluon PDFs, unpolarized and polarized, and can be used to compute all
T-even TMDs.

T-odd gluon TMDs vanish at tree level, because there is no residual interaction between the active quark and the
spectator; equivalently, there is no interference between two competing channels producing the complex amplitude
whose imaginary part gives the T-odd contribution. We can generate such structures by considering the interference
between the tree-level scattering amplitude and the two-gluon-exchange scattering amplitudes, as shown in Fig. 2.
This corresponds to the one-gluon-exchange approximation of the gauge link operator. As we shall discuss in detail,
the exact form of the gauge link depends on the process and leads also to two di↵erent types of functions.

P

p

P � p

⌫µ

Figure 1. Tree-level cut diagram for the calculation of T-even leading-twist gluon TMDs. The triple line represents the spin- 12
spectator. The red blob represents the nucleon-gluon-spectator vertex.

A. Tree-level scattering amplitude

Following Ref. [28], we work in the frame where the nucleon momentum P has no transverse component:

P =


M

2

2P+
, P

+
, 0

�
, (1)

where M is the nucleon mass. The parton momentum is parametrized as

p =


p
2 + p2

T

2xP+
, xP

+
, pT

�
, (2)

where evidently x = p
+
/P

+ is the light-cone (longitudinal) momentum fraction carried by the parton.
In the spectator-model framework one assumes that the nucleon in the state |P, Si can split into a gluon with

momentum p and other remainders, e↵ectively treated as a single spin- 12 spectator particle with momentum P � p

and mass MX . Similarly to Refs. [22, 28], we define a “tree-level” correlator as (see Fig. 1)1

�µ⌫(0)(x,pT , S) =
1

(2⇡)3 2 (1� x)P+
Tr

"
(/P +M)

1 + �
5/S

2
G

⇤⌫�(p, p)Y†ab
�

�
p
2
�
(/P � /p+MX)Yba

⇢ (p2)Gµ⇢(p, p)

#
, (3)

where a, b are color indices (in the adjoint representation) and [Check which one we actually used! The original

formula comes from Fig. 7.12 of Collins’s book, which is identical to the one in Ref. [29]. However,

1 We remark that in Ref. [28] there is an error in the position of the Y vertices and a typo in the definition of the Gµ⇢ propagator.
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FIG. 4. The T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001 (right panels) at Q0 = 1.64 GeV.

Green band indicates the 68% statistical uncertainty, solid black line for the replica 11. From top to bottom, panels show
xfg

1 (x,p
2
T ), xg

g
1L(x,p

2
T ), xg

g
1T (x,p

2
T ), and xh?g

1 (x,p2
T ).

To this purpose, it is also useful to consider the following densities that describe the 2D pT -distribution of gluons
at di↵erent x for various combinations of their polarization and of the nucleon spin state. For an unpolarized nucleon,
we identify the unpolarized density

x⇢(x, px, py) = xfg
1 (x,p

2
T ) (19)

as the probability density of finding unpolarized gluons at given x and pT , while the “Boer–Mulders” density

x⇢$(x, px, py) =
1

2


xfg

1 (x,p
2
T ) +

p2x � p2y
2M2

xh?g
1 (x,p2

T )

�
(20)

represents the probability density of finding gluons linearly polarized in the transverse plane at x and pT . The
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FIG. 4. The T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001 (right panels) at Q0 = 1.64 GeV.

Green band indicates the 68% statistical uncertainty, solid black line for the replica 11. From top to bottom, panels show
xfg

1 (x,p
2
T ), xg

g
1L(x,p

2
T ), xg

g
1T (x,p

2
T ), and xh?g

1 (x,p2
T ).

To this purpose, it is also useful to consider the following densities that describe the 2D pT -distribution of gluons
at di↵erent x for various combinations of their polarization and of the nucleon spin state. For an unpolarized nucleon,
we identify the unpolarized density

x⇢(x, px, py) = xfg
1 (x,p

2
T ) (19)

as the probability density of finding unpolarized gluons at given x and pT , while the “Boer–Mulders” density

x⇢$(x, px, py) =
1

2


xfg

1 (x,p
2
T ) +

p2x � p2y
2M2

xh?g
1 (x,p2

T )

�
(20)

represents the probability density of finding gluons linearly polarized in the transverse plane at x and pT . The
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Green band indicates the 68% statistical uncertainty, solid black line for the replica 11. From top to bottom, panels show
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1 (x,p
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T ), xg
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T ), xg
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1T (x,p
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T ), and xh?g

1 (x,p2
T ).

To this purpose, it is also useful to consider the following densities that describe the 2D pT -distribution of gluons
at di↵erent x for various combinations of their polarization and of the nucleon spin state. For an unpolarized nucleon,
we identify the unpolarized density

x⇢(x, px, py) = xfg
1 (x,p

2
T ) (19)

as the probability density of finding unpolarized gluons at given x and pT , while the “Boer–Mulders” density

x⇢$(x, px, py) =
1

2


xfg

1 (x,p
2
T ) +

p2x � p2y
2M2

xh?g
1 (x,p2

T )

�
(20)

represents the probability density of finding gluons linearly polarized in the transverse plane at x and pT . The
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that the output of the fit selects the option a � b < 0, which corresponds to a spectral function 0  ⇢(MX) < 0.5
asymptotically vanishing for very large spectator masses MX (see Fig. 2). Therefore, we deduce that the positivity
bound fulfilled by F̂ g in the right handside of Eq. (17) (when corresponding to the polarized TMDs of Eqs. (13)-(15))
is maintained through the integral also for the actual gluon TMDs on the left handside.
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FIG. 3. The xfg
1 (left panel) and xgg1 (right panel) as functions of x at Q0 = 1.64 GeV. Lighter band with red dashed borders

for the NNPDF3.1sx parametrization of xfg
1 [78] and the NNPDFpol1.1 parametrization of xgg1 [79]. Green band for the 68%

uncertainty band of the spectator model fit. Solid black line for the result of the replica 11.

In Fig. 3, we show the results of our simultaneous fit of xfg
1 (x) (left panel) and xgg1(x) (right panel) atQ0 = 1.64 GeV.

The lighter band with red dashed borders identifies the NNPDF3.1sx parametrization of xfg
1 [78] and the NNPDFpol1.1

parametrization of xgg1 [79]. The green band is the 68% uncertainty band of our fit. The solid black line represents
the result of replica 11. The right panel shows that our gluon helicity at most diverges more slowly than 1/x. On
the one side, this feature can ben considered as a rigidity of the model. On the other side, it can be considered as
a prediction. In any case, we verified that it is important to perform a simultaneous fit of both the unpolarized and
helicity gluon PDFs. Bounding the model parameters only to fg

1 (x) is not enough to get a reliable x-behavior of the
model.

IV. RESULTS

With the parameters in Tab. I, the second Mellin moment of our model PDF fg
1 (x,Q0), i.e., the nucleon momentum

fraction carried by the gluons at the model scale Q0 = 1.64 GeV, turns out to be

hxig =

Z 1

0
dx x fg

1 (x,Q0) = 0.424± 0.009 . (18)

This result is in excellent agreement with the latest lattice calculation hxig = 0.427(92) obtained at the scale 2
GeV [81]. The first Mellin moment of the model PDF gg1(x) gives the contribution of the gluon helicity to the nucleon
spin. In our model, it turns out to be Sg = 1

2 h1i�g = 0.159± 0.011 at Q0 = 1.64 GeV, to be compared with the latest
lattice estimate of the gluon total angular momentum hJig = 0.187(46) at the scale 2 GeV [81].

In Fig. 4, we show our model results for T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001

(right panels) at the same scale Q0 = 1.64 GeV as in Fig. 3, i.e., without evolution e↵ects. Again, the green band
refers to the 68% statistical uncertainty, and the solid black line indicates the result of the best replica 11. From top
to bottom, the panels refer to the unpolarized xfg

1 (x,p
2
T ), the helicity xgg1L(x,p

2
T ), the worm-gear xgg1T (x,p

2
T ), and

the Boer–Mulders xh?g
1 (x,p2

T ). Each TMD shows a distinct pattern both in x and p2
T . In particular, the unpolarized

xfg
1 (x,p

2
T ) clearly shows a non-Gaussian shape in p2

T with a large flattening tail for p2
T ! 1 GeV. Moreover, for

p2
T ! 0 it reaches a very small but non-vanishing value, suggesting that the gluon wave function has a significant

component with orbital angular momentum L = 1 3. The information underlying these plots largely expands the one
contained in Fig. 3 and can be a useful guidance in explorations of the full 3D dynamics of gluons.

3 This result would change if the spectator were a particle with spin di↵erent from 1
2 .

Reproduces collinear gluon PDFs

3

II. DESCRIPTION OF THE MODEL

In Ref. [28] we proposed a model to compute gluon TMDs, based on the assumption that a nucleon can emit a gluon,
and what remains after the emission is treated as a single spectator particle (see Fig. 1). This spectator particle is
considered to be on-shell, but its mass is allowed to take a continuous range of values, described by a spectral function.
The nucleon-gluon-spectator coupling is described by an e↵ective vertex containing two form factors. Such model can
e↵ectively reproduce the standard collinear gluon PDFs, unpolarized and polarized, and can be used to compute all
T-even TMDs.

T-odd gluon TMDs vanish at tree level, because there is no residual interaction between the active quark and the
spectator; equivalently, there is no interference between two competing channels producing the complex amplitude
whose imaginary part gives the T-odd contribution. We can generate such structures by considering the interference
between the tree-level scattering amplitude and the two-gluon-exchange scattering amplitudes, as shown in Fig. 2.
This corresponds to the one-gluon-exchange approximation of the gauge link operator. As we shall discuss in detail,
the exact form of the gauge link depends on the process and leads also to two di↵erent types of functions.

P

p

P � p

⌫µ

Figure 1. Tree-level cut diagram for the calculation of T-even leading-twist gluon TMDs. The triple line represents the spin- 12
spectator. The red blob represents the nucleon-gluon-spectator vertex.

A. Tree-level scattering amplitude

Following Ref. [28], we work in the frame where the nucleon momentum P has no transverse component:

P =


M

2

2P+
, P

+
, 0

�
, (1)

where M is the nucleon mass. The parton momentum is parametrized as

p =


p
2 + p2

T

2xP+
, xP

+
, pT

�
, (2)

where evidently x = p
+
/P

+ is the light-cone (longitudinal) momentum fraction carried by the parton.
In the spectator-model framework one assumes that the nucleon in the state |P, Si can split into a gluon with

momentum p and other remainders, e↵ectively treated as a single spin- 12 spectator particle with momentum P � p

and mass MX . Similarly to Refs. [22, 28], we define a “tree-level” correlator as (see Fig. 1)1

�µ⌫(0)(x,pT , S) =
1

(2⇡)3 2 (1� x)P+
Tr

"
(/P +M)

1 + �
5/S

2
G

⇤⌫�(p, p)Y†ab
�

�
p
2
�
(/P � /p+MX)Yba

⇢ (p2)Gµ⇢(p, p)

#
, (3)

where a, b are color indices (in the adjoint representation) and [Check which one we actually used! The original

formula comes from Fig. 7.12 of Collins’s book, which is identical to the one in Ref. [29]. However,

1 We remark that in Ref. [28] there is an error in the position of the Y vertices and a typo in the definition of the Gµ⇢ propagator.
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FIG. 4. The T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001 (right panels) at Q0 = 1.64 GeV.

Green band indicates the 68% statistical uncertainty, solid black line for the replica 11. From top to bottom, panels show
xfg

1 (x,p
2
T ), xg

g
1L(x,p

2
T ), xg

g
1T (x,p

2
T ), and xh?g

1 (x,p2
T ).

To this purpose, it is also useful to consider the following densities that describe the 2D pT -distribution of gluons
at di↵erent x for various combinations of their polarization and of the nucleon spin state. For an unpolarized nucleon,
we identify the unpolarized density

x⇢(x, px, py) = xfg
1 (x,p

2
T ) (19)

as the probability density of finding unpolarized gluons at given x and pT , while the “Boer–Mulders” density

x⇢$(x, px, py) =
1

2


xfg

1 (x,p
2
T ) +

p2x � p2y
2M2

xh?g
1 (x,p2

T )

�
(20)

represents the probability density of finding gluons linearly polarized in the transverse plane at x and pT . The
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FIG. 4. The T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001 (right panels) at Q0 = 1.64 GeV.

Green band indicates the 68% statistical uncertainty, solid black line for the replica 11. From top to bottom, panels show
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1 (x,p
2
T ), xg

g
1L(x,p

2
T ), xg

g
1T (x,p

2
T ), and xh?g

1 (x,p2
T ).

To this purpose, it is also useful to consider the following densities that describe the 2D pT -distribution of gluons
at di↵erent x for various combinations of their polarization and of the nucleon spin state. For an unpolarized nucleon,
we identify the unpolarized density

x⇢(x, px, py) = xfg
1 (x,p

2
T ) (19)

as the probability density of finding unpolarized gluons at given x and pT , while the “Boer–Mulders” density

x⇢$(x, px, py) =
1

2


xfg

1 (x,p
2
T ) +

p2x � p2y
2M2

xh?g
1 (x,p2

T )

�
(20)

represents the probability density of finding gluons linearly polarized in the transverse plane at x and pT . The
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To this purpose, it is also useful to consider the following densities that describe the 2D pT -distribution of gluons
at di↵erent x for various combinations of their polarization and of the nucleon spin state. For an unpolarized nucleon,
we identify the unpolarized density

x⇢(x, px, py) = xfg
1 (x,p

2
T ) (19)

as the probability density of finding unpolarized gluons at given x and pT , while the “Boer–Mulders” density

x⇢$(x, px, py) =
1

2


xfg

1 (x,p
2
T ) +

p2x � p2y
2M2

xh?g
1 (x,p2

T )

�
(20)

represents the probability density of finding gluons linearly polarized in the transverse plane at x and pT . The

Generates nontrivial and widely different TMDs
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that the output of the fit selects the option a � b < 0, which corresponds to a spectral function 0  ⇢(MX) < 0.5
asymptotically vanishing for very large spectator masses MX (see Fig. 2). Therefore, we deduce that the positivity
bound fulfilled by F̂ g in the right handside of Eq. (17) (when corresponding to the polarized TMDs of Eqs. (13)-(15))
is maintained through the integral also for the actual gluon TMDs on the left handside.
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FIG. 3. The xfg
1 (left panel) and xgg1 (right panel) as functions of x at Q0 = 1.64 GeV. Lighter band with red dashed borders

for the NNPDF3.1sx parametrization of xfg
1 [78] and the NNPDFpol1.1 parametrization of xgg1 [79]. Green band for the 68%

uncertainty band of the spectator model fit. Solid black line for the result of the replica 11.

In Fig. 3, we show the results of our simultaneous fit of xfg
1 (x) (left panel) and xgg1(x) (right panel) atQ0 = 1.64 GeV.

The lighter band with red dashed borders identifies the NNPDF3.1sx parametrization of xfg
1 [78] and the NNPDFpol1.1

parametrization of xgg1 [79]. The green band is the 68% uncertainty band of our fit. The solid black line represents
the result of replica 11. The right panel shows that our gluon helicity at most diverges more slowly than 1/x. On
the one side, this feature can ben considered as a rigidity of the model. On the other side, it can be considered as
a prediction. In any case, we verified that it is important to perform a simultaneous fit of both the unpolarized and
helicity gluon PDFs. Bounding the model parameters only to fg

1 (x) is not enough to get a reliable x-behavior of the
model.

IV. RESULTS

With the parameters in Tab. I, the second Mellin moment of our model PDF fg
1 (x,Q0), i.e., the nucleon momentum

fraction carried by the gluons at the model scale Q0 = 1.64 GeV, turns out to be

hxig =

Z 1

0
dx x fg

1 (x,Q0) = 0.424± 0.009 . (18)

This result is in excellent agreement with the latest lattice calculation hxig = 0.427(92) obtained at the scale 2
GeV [81]. The first Mellin moment of the model PDF gg1(x) gives the contribution of the gluon helicity to the nucleon
spin. In our model, it turns out to be Sg = 1

2 h1i�g = 0.159± 0.011 at Q0 = 1.64 GeV, to be compared with the latest
lattice estimate of the gluon total angular momentum hJig = 0.187(46) at the scale 2 GeV [81].

In Fig. 4, we show our model results for T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001

(right panels) at the same scale Q0 = 1.64 GeV as in Fig. 3, i.e., without evolution e↵ects. Again, the green band
refers to the 68% statistical uncertainty, and the solid black line indicates the result of the best replica 11. From top
to bottom, the panels refer to the unpolarized xfg

1 (x,p
2
T ), the helicity xgg1L(x,p

2
T ), the worm-gear xgg1T (x,p

2
T ), and

the Boer–Mulders xh?g
1 (x,p2

T ). Each TMD shows a distinct pattern both in x and p2
T . In particular, the unpolarized

xfg
1 (x,p

2
T ) clearly shows a non-Gaussian shape in p2

T with a large flattening tail for p2
T ! 1 GeV. Moreover, for

p2
T ! 0 it reaches a very small but non-vanishing value, suggesting that the gluon wave function has a significant

component with orbital angular momentum L = 1 3. The information underlying these plots largely expands the one
contained in Fig. 3 and can be a useful guidance in explorations of the full 3D dynamics of gluons.

3 This result would change if the spectator were a particle with spin di↵erent from 1
2 .
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II. DESCRIPTION OF THE MODEL

In Ref. [28] we proposed a model to compute gluon TMDs, based on the assumption that a nucleon can emit a gluon,
and what remains after the emission is treated as a single spectator particle (see Fig. 1). This spectator particle is
considered to be on-shell, but its mass is allowed to take a continuous range of values, described by a spectral function.
The nucleon-gluon-spectator coupling is described by an e↵ective vertex containing two form factors. Such model can
e↵ectively reproduce the standard collinear gluon PDFs, unpolarized and polarized, and can be used to compute all
T-even TMDs.

T-odd gluon TMDs vanish at tree level, because there is no residual interaction between the active quark and the
spectator; equivalently, there is no interference between two competing channels producing the complex amplitude
whose imaginary part gives the T-odd contribution. We can generate such structures by considering the interference
between the tree-level scattering amplitude and the two-gluon-exchange scattering amplitudes, as shown in Fig. 2.
This corresponds to the one-gluon-exchange approximation of the gauge link operator. As we shall discuss in detail,
the exact form of the gauge link depends on the process and leads also to two di↵erent types of functions.

P

p

P � p

⌫µ

Figure 1. Tree-level cut diagram for the calculation of T-even leading-twist gluon TMDs. The triple line represents the spin- 12
spectator. The red blob represents the nucleon-gluon-spectator vertex.

A. Tree-level scattering amplitude

Following Ref. [28], we work in the frame where the nucleon momentum P has no transverse component:

P =


M

2

2P+
, P

+
, 0

�
, (1)

where M is the nucleon mass. The parton momentum is parametrized as

p =


p
2 + p2

T

2xP+
, xP

+
, pT

�
, (2)

where evidently x = p
+
/P

+ is the light-cone (longitudinal) momentum fraction carried by the parton.
In the spectator-model framework one assumes that the nucleon in the state |P, Si can split into a gluon with

momentum p and other remainders, e↵ectively treated as a single spin- 12 spectator particle with momentum P � p

and mass MX . Similarly to Refs. [22, 28], we define a “tree-level” correlator as (see Fig. 1)1

�µ⌫(0)(x,pT , S) =
1

(2⇡)3 2 (1� x)P+
Tr

"
(/P +M)

1 + �
5/S

2
G

⇤⌫�(p, p)Y†ab
�

�
p
2
�
(/P � /p+MX)Yba

⇢ (p2)Gµ⇢(p, p)

#
, (3)

where a, b are color indices (in the adjoint representation) and [Check which one we actually used! The original

formula comes from Fig. 7.12 of Collins’s book, which is identical to the one in Ref. [29]. However,

1 We remark that in Ref. [28] there is an error in the position of the Y vertices and a typo in the definition of the Gµ⇢ propagator.
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Figure 2. Diagram for the calculation of the gluon correlator including the single-gluon exchange contribution, necessary to
obtain T-odd TMDs. The eikonal propagator arising from the Wilson line in the operator definition of TMDs is indicated by
a gluon double line. Only the imaginary part of the box diagram on the left-hand side of the cut is relevant for the calculation
of T-odd functions. The red blobs represents the nucleon-gluon-spectator vertex, while the green blob stands for the spectator-
gluon-spectator vertex. The Hermitian-conjugate diagram is not shown. [We have to change the color of the blob in
the center (green), make the spectator line continuous. Possibly, it would be better to write also the µ and ⌫
indices above the left and right ⇥, respectively, and the color indices; Francesco: done!]

First, we consider the correlator that is involved in processes where the gauge link originates from the final-state
interaction with an outgoing gluon (as, for instance, a hypothetical process where a Higgs boson scatters o↵ a gluon
in the proton). The same correlator is involved in processes with a quark-antiquark pair in the final state such,
e.g., two-jet or heavy-quark pair SIDIS [37]. This correlator contains two future-pointing gauge links and is usually
denoted with the [+,+] symbol. It can be parametrized in terms of the so-called Weizsäcker–Williams (WW) gluon
TMD, also called f -type gluon TMD.

To compute this correlator, we use the diagram of Fig. 2, which contains an interaction of the spectator with an
eikonalized gluon line, indicated by the double line. The Feynman rules to describe the eikonal gluon line and the
eikonal vertex are written in detail in Ref. [29].

The expression of the correlator turns out to be [We have to check the color indices. Check the overall

(�i) factor, which seems to be consistent with, e.g., the combination of Eq. (84) and (9) of our diquark

paper [22]. Check the last G
µ⇢
: its argum ent is (p, p + l) or (p + l, p)?; Francesco: Everything checked

and confirmed, with one change: G
⇤�⌫(p, p) ! G

⇤⌫�(p, p).]

�µ⌫[+,+](x,pT , S) =
1

(2⇡)3 2 (1� x)P+
Tr

"
(/P +M)

1 + �
5/S

2
G

⇤⌫�(p, p)Y†ab
�

�
p
2
�
(/P � /p+MX) (gsn

↵
�f

acd)

⇥
Z

d
4
l

(2⇡)4

✓
�iX bde

↵ (l2)

l2 �m2
g

◆✓
�i

l+ + i✏

◆
i
�
/P � /p� /l +MX

�

(P � p� l)2 �M
2
X + i✏

Yec
⇢

�
(p+ l)2

�
G

µ⇢(p, p+ l)

#
,

(12)

with X bde
↵ to be defined in Section IIC. For the calculation of the [�,�] correlator, involved for instance in the process

of Higgs production via gluon fusion (gg ! H) [38, 39], it is su�cient to change the sign of the +i✏ term in Eq. (12).

The [+,�] correlator, instead, is involved in processes such as photon-jet hadroproduction [40–42]. In these pro-
cesses, we remark that TMD factorization is not expected to hold [43]. However, it is possible to compute the TMDs
in the context of our model.2 In order to do that, it is su�cient to include a coupling through the symmetric dacd color
structure constants instead of facd. The [+,�] correlator can be parametrized in terms of dipole distributions [47–
49], also called d-type distributions. Therefore, to compute these distributions we need to start from the following

2 Due to the connection between the T-odd TMDs at twist-2 and the collinear PDFs at twist-3, the distinction between fabc and dabc

appears already in the correlator of the Qiu–Sterman twist-3 collinear PDF [44–46].
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indices above the left and right ⇥, respectively, and the color indices; Francesco: done!]

First, we consider the correlator that is involved in processes where the gauge link originates from the final-state
interaction with an outgoing gluon (as, for instance, a hypothetical process where a Higgs boson scatters o↵ a gluon
in the proton). The same correlator is involved in processes with a quark-antiquark pair in the final state such,
e.g., two-jet or heavy-quark pair SIDIS [37]. This correlator contains two future-pointing gauge links and is usually
denoted with the [+,+] symbol. It can be parametrized in terms of the so-called Weizsäcker–Williams (WW) gluon
TMD, also called f -type gluon TMD.

To compute this correlator, we use the diagram of Fig. 2, which contains an interaction of the spectator with an
eikonalized gluon line, indicated by the double line. The Feynman rules to describe the eikonal gluon line and the
eikonal vertex are written in detail in Ref. [29].

The expression of the correlator turns out to be [We have to check the color indices. Check the overall

(�i) factor, which seems to be consistent with, e.g., the combination of Eq. (84) and (9) of our diquark

paper [22]. Check the last G
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: its argum ent is (p, p + l) or (p + l, p)?; Francesco: Everything checked
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with X bde
↵ to be defined in Section IIC. For the calculation of the [�,�] correlator, involved for instance in the process

of Higgs production via gluon fusion (gg ! H) [38, 39], it is su�cient to change the sign of the +i✏ term in Eq. (12).

The [+,�] correlator, instead, is involved in processes such as photon-jet hadroproduction [40–42]. In these pro-
cesses, we remark that TMD factorization is not expected to hold [43]. However, it is possible to compute the TMDs
in the context of our model.2 In order to do that, it is su�cient to include a coupling through the symmetric dacd color
structure constants instead of facd. The [+,�] correlator can be parametrized in terms of dipole distributions [47–
49], also called d-type distributions. Therefore, to compute these distributions we need to start from the following

2 Due to the connection between the T-odd TMDs at twist-2 and the collinear PDFs at twist-3, the distinction between fabc and dabc

appears already in the correlator of the Qiu–Sterman twist-3 collinear PDF [44–46].
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interaction with an outgoing gluon (as, for instance, a hypothetical process where a Higgs boson scatters o↵ a gluon
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denoted with the [+,+] symbol. It can be parametrized in terms of the so-called Weizsäcker–Williams (WW) gluon
TMD, also called f -type gluon TMD.

To compute this correlator, we use the diagram of Fig. 2, which contains an interaction of the spectator with an
eikonalized gluon line, indicated by the double line. The Feynman rules to describe the eikonal gluon line and the
eikonal vertex are written in detail in Ref. [29].
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of Higgs production via gluon fusion (gg ! H) [38, 39], it is su�cient to change the sign of the +i✏ term in Eq. (12).

The [+,�] correlator, instead, is involved in processes such as photon-jet hadroproduction [40–42]. In these pro-
cesses, we remark that TMD factorization is not expected to hold [43]. However, it is possible to compute the TMDs
in the context of our model.2 In order to do that, it is su�cient to include a coupling through the symmetric dacd color
structure constants instead of facd. The [+,�] correlator can be parametrized in terms of dipole distributions [47–
49], also called d-type distributions. Therefore, to compute these distributions we need to start from the following

2 Due to the connection between the T-odd TMDs at twist-2 and the collinear PDFs at twist-3, the distinction between fabc and dabc
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

JLab



WE NEED MORE DATA 32

12

10�5 10�4 10�3 10�2 10�1 100

x

100

101

102

103

104

105

Q
2
[G

eV
2
]

E605
E772
E288
STAR
PHENIX
CDF
D0
LHCb
CMS
ATLAS
HERMES
COMPASS

FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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CONCLUSIONS 34

▸ From the theoretical side, the formalism to study TMDs is well known, for 
quarks and gluons at leading twist 

▸ Improvements are still needed, e.g., subleading twist and other power 
corrections, increase of perturbative accuracy

▸ From the phenomenological side, we have a good knowledge of the 
unpolarized TMD, some knowledge of the Sivers function, and some sparse 
information about other TMDs.


