J/ψ and ω decays to 3π with Khuri–Treiman equations

Miguel Albaladejo (IFIC)

HADRON 2023 20th International Conference on Hadron Spectroscopy and Structure Genova Jun. 5-9, 2023

GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA E INNOVACIÓ

JPAC: Joint Physics Analysis Center

- Work in theoretical/experimental/phenomenological analysis
- Light/heavy meson spectroscopy
- Interaction with many experimental collaborations: (GlueX, CLAS, BES, ...) and LQCD groups
- Plenary talk by A. Szczepaniak [Tue., noon]
- Web site: https://www.jpac-physics.org/

Alessandro Pilloni

Arkaitz Rodas Jefferson Lab

Gloria Montaña

Jefferson Lab

Sergi Gonzàlez-Solís

Astrid Hiller Blin EK University of Tübingen

Łukasz Bibrzycki

Vanamali Shastry

César Fernández

Viktor Mokeev

Indiana University

Wyatt Smith Indiana University

Introduction: Khuri-Treiman equations in a nutshell

• Partial wave expansion in the s-channel:

$$T(s,t,u) = \sum_{\ell=0}^{\infty} (2\ell+1) P_{\ell}(z_s) t_{\ell}(s)$$

- Two main (connected) problems:
 - Infinite number of PW
 - PW have RHC and LHC
- Only RHC: BS equation, K-matrix, DR,...
- Problem with "truncation": t_ℓ(s) only depends on s, so singularities in the t-, u-channel can only appear suming an infinite number of PW.

h

 In many decay processes one wants to take into account unitarity/FSI interactions in the three possible channels.

d

Introduction: Khuri-Treiman equations in a nutshell

Khuri-Treiman equations are a tool to achieve this two-body unitarity in the three channels

[N. Khuri, S. Treiman, Phys. Rev. 119, 1115 (1960)]

- Consider three (s-, t-, u-channels) truncated "isobar" expansions.
- Isobars $f_{\ell}^{(s)}(s)$ have only RHC: amenable for dispersion relations.

$$T(s,t,u) = \sum_{\ell=0}^{\infty} (2\ell+1) P_{\ell}(z_s) t_{\ell}(s)$$

= $\sum_{\ell=0}^{n_s} (2\ell+1) P_{\ell}(z_s) f_{\ell}^{(s)}(s) + \sum_{\ell=0}^{n_t} (2\ell+1) P_{\ell}(z_t) f_{\ell}^{(t)}(t) + \sum_{\ell=0}^{n_u} (2\ell+1) P_{\ell}(z_u) f_{\ell}^{(u)}(u)$

- s-channel singularities appear in the s-channel isobar, $t_{\ell}^{(s)}(s)$.
- Singularities in the t-, u-channel are recovered!
- The LHC of the partial waves are given by the RHC of the crossed channel isobars

$$t_{\ell}(s) = \frac{1}{2} \int dz P_{\ell}(z) T(s, t', u') = f_{\ell}^{(s)}(s) + \frac{1}{2} \int dz Q_{\ell\ell'}(s, t') f_{\ell'}^{(t)}(t') dz$$

 $\omega
ightarrow 3\pi$ amplitude. Phenomenology

• Amplitude:

$$\mathcal{M}_+(s,t,u) = \frac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2\theta_s\right)$$

- Decay width: $d^2\Gamma \sim \phi(s, t, u) |F(s, t, u)|^2$
- Dalitz plot parameters (α, β, γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(\mathbf{s},t,u)|^2 = |\mathcal{N}|^2 \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^2 + \cdots\right)$$

• Why revisit $\omega \rightarrow 3\pi$?

 $\omega
ightarrow 3\pi$ amplitude. Phenomenology

• Amplitude:

$$\mathcal{M}_+(s,t,u) = \frac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2\theta_s\right)$$

- Decay width: $d^2\Gamma \sim \phi(s, t, u) |F(s, t, u)|^2$
- Dalitz plot parameters (α, β, γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(s,t,u)|^{2} = |\mathcal{N}|^{2} \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^{2} + \cdots\right)$$

• Why revisit $\omega \rightarrow 3\pi$?

	Bonn (2012)		JPAC (2015)		
	Eur. Phys. J., C72 , 2014 (2012)		Phys. Rev., D91, 094029 (2015)		
	w/oKT	w KT	w/o KT	w KT	
α	130(5)	79(5)	125	84	
β	31(2)	26(2)	30	28	

 $\omega \rightarrow 3\pi$ amplitude. Phenomenology

Amplitude: ۲

$$\mathcal{M}_+(s,t,u) = \frac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2\theta_s\right)$$

- Decay width: $d^2 \Gamma \sim \phi(s, t, u) |F(s, t, u)|^2$
- Dalitz plot parameters (α, β, γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$F(s,t,u)|^{2} = |\mathcal{N}|^{2} \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^{2} + \cdots\right)$$

Why revisit $\omega \rightarrow 3\pi$?

	Bonn (2012)		JPAC (2015)		BESIII (2018)
	Eur. Phys. J., C72, 2014 (2012)		Phys. Rev., D91, 094029 (2015)		Phys. Rev., D98 , 112007 (2018)
	w/oKT	w KT	w/o KT	w KT	Exp.
α	130(5)	79(5)	125	84	120.2(7.1)(3.8)
β	31(2)	26(2)	30	28	29.5(8.0)(5.3)

• One (or more) out of three is wrong... 2) KT eqs., in general?

1) Experiment?

3) Something particular?

KT equations: DR, subtractions, solutions, and all that...

• PW decomposition:
$$F(s, t, u) = \sum_{i \text{ odd}} P'_i(\cos \theta_s)[p(s)q(s)]^{j-1}f_j(s) = f_1(s) + \cdots$$

• KT/isobar decomposition: consider only $j = 1 (\rho)$ isobar, F(s):

$$F(s,t,u) = F(s) + F(t) + F(u)$$

• PW projection of the KT decomposition:

$$f_1(s) = F(s) + \hat{F}(s)$$
, $\hat{F}(s) = \frac{3}{2} \int_{-1}^{1} dz_s (1 - z_s^2) F(t(s, z_s))$

Discontinuity:

$$\Delta F(s) = \Delta f_1(s) = \rho(s)t_{11}^*(s)f_1(s) = \rho(s)t_{11}^*(s)\left(F(s) + \hat{F}(s)\right)$$

Unsubtracted DR	Once-subtracted DR
$F(s) = a F_0(s)$ $F_0(s) = \Omega(s) \left[1 + \frac{s}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta(s') \hat{F}_0(s')}{ \Omega(s') (s'-s)} \right]$	$F(s) = a \left(F'_{a}(s) + b F_{b}(s) \right)$ $F'_{a}(s) = \Omega(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}'_{a}(s')}{ \Omega(s') (s'-s)} \right]$ $F_{b}(s) = \Omega(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{b}(s')}{ \Omega(s') (s'-s)} \right]$

KT equations: DR, subtractions, solutions, and all that...

Once-subtracted DR

$$F(s) = a (F'_{a}(s) + b F_{b}(s))$$

$$F'_{a}(s) = \Omega(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}'_{a}(s')}{|\Omega(s')|(s'-s)} \right]$$

$$F_{b}(s) = \Omega(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{b}(s')}{|\Omega(s')|(s'-s)} \right]$$

$\omega \rightarrow \pi^0$ transition form factor

• The decays $\omega(\to \pi^0 \gamma^*) \to \pi^0 \ell^+ \ell^-$ and $\omega \to \pi^0 \gamma$ governed by the TFF $f_{\omega \pi^0}(s)$.

$$\mathcal{M}(\omega \to \pi^0 \ell^+ \ell^-) = f_{\omega \pi^0}(\mathbf{s}) \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p_{\omega}, \lambda) p^{\nu} q^{\alpha} \frac{ie^2}{\mathbf{s}} \bar{u}(p_-) \gamma^{\beta} v(p_+)$$
$$\Gamma(\omega \to \pi^0 \gamma) = |f_{\omega \pi^0}(\mathbf{0})|^2 \frac{e^2 (m_{\omega}^2 - m_{\pi^0}^2)^3}{96\pi m_{\omega}^3}$$

Dispersive representation:

$$f_{\omega\pi^{0}}(s) = f_{\omega\pi^{0}}(0) + \frac{s}{12\pi^{2}} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{q_{\pi}(s')^{3}}{s'^{\frac{3}{2}}(s'-s)} \left(F(s') + \hat{F}(s')\right) F_{\pi}^{V}(s')^{*}$$

- $f_{\omega\pi^0}(0) = |f_{\omega\pi^0}(0)| e^{i\phi_{\omega\pi^0}(0)}$
- Experimental information: $F_{\omega\pi^0}(s) = \frac{f_{\omega\pi^0}(s)}{f_{\omega\pi^0}(0)}$ Only the relative phase $\frac{a}{f_{\omega\pi^0}(0)} = \frac{|a|}{|f_{\omega\pi^0}(0)|} \frac{1}{e^{i(\phi_{\omega\pi^0}(0) \phi_a)}}$.

Summary of amplitudes/free parameters/exp. input

$\omega ightarrow 3\pi$ amplitude [F(s, t, u)]	$\omega o \gamma^{(*)} \pi^0$ TFF $[f_{\omega \pi^0}(s)]$
Free parameters: $ a , b ,\phi_b$	Free parameters: $ f_{\omega\pi^0}(0) , \phi_{\omega\pi^0}(0) $ $(\bigoplus a , b , \phi_b)$
Experimental input: Γ _{3π} Dalitz plot parameters	Experimental input: $\Gamma_{\gamma\pi^{0}}$ $ F_{\omega\pi^{0}}(s) ^{2}$

First analysis in three steps

- (1) Fix $|b| \simeq 2.9$, $\phi_b \simeq 1.9$ with the DP parameters.
- **2** Fix $|a| \simeq 280 \text{ GeV}^{-3}$, $|f_{\omega\pi^0}(0)| \simeq 2.3 \text{ GeV}^{-1}$ from $\Gamma_{\omega\to 3\pi}$, $\Gamma_{\omega\to\gamma\pi}$.
- (a) You are left with $\phi_{\omega\pi^0}(0)$ and the TFF Data.

$$\chi^{2}_{\text{DP}} = \left(\frac{\alpha^{(t)} - \alpha^{(e)}}{\sigma_{\alpha}}\right)^{2} + \cdots$$

$$\chi^{2}_{\Gamma} = \left(\frac{\Gamma^{(t)}_{3\pi} - \Gamma^{(e)}_{3\pi}}{\sigma_{\Gamma_{3\pi}}}\right)^{2} + \left(\frac{\Gamma^{(t)}_{\gamma\pi} - \Gamma^{(e)}_{\gamma\pi}}{\sigma_{\Gamma\gamma\pi}}\right)^{2}$$

$$\chi^{2}_{\text{A2,NA60}} = \sum_{i} \left(\frac{|F_{\omega\pi}(s_{i})|^{2} - |F^{(i)}_{\omega\pi}|^{2}}{\sigma_{F^{(i)}_{\omega\pi}}}\right)^{2}$$

First analysis in three steps

- Fix $|b| \simeq 2.9$, $\phi_b \simeq 1.9$ with the DP parameters.
- 2 Fix $|a| \simeq 280 \text{ GeV}^{-3}$, $|f_{\omega \pi^0}(0)| \simeq 2.3 \text{ GeV}^{-1}$ from $\Gamma_{\omega \to 3\pi}$, $\Gamma_{\omega \to \gamma\pi}$.
- 3 You are left with $\phi_{\omega\pi^0}(0)$ and the TFF Data.

$$\chi^{2}_{\text{DP}} = \left(\frac{\alpha^{(t)} - \alpha^{(e)}}{\sigma_{\alpha}}\right)^{2} + \cdots$$

$$\chi^{2}_{\Gamma} = \left(\frac{\Gamma^{(t)}_{3\pi} - \Gamma^{(e)}_{3\pi}}{\sigma_{\Gamma_{3\pi}}}\right)^{2} + \left(\frac{\Gamma^{(t)}_{\gamma\pi} - \Gamma^{(e)}_{\gamma\pi}}{\sigma_{\Gamma\gamma\pi}}\right)^{2}$$

$$\chi^{2}_{\text{A2,NA60}} = \sum_{i} \left(\frac{|F_{\omega\pi}(s_{i})|^{2} - |F_{\omega\pi}^{(i)}|^{2}}{\sigma_{\Gamma_{\omega\pi}}}\right)^{2}$$

- Two different minima (low and high $\phi_{\omega\pi^0}(0)$) are found. Both have similar χ^2 of the TFF.

Make a global, simultaneous analysis

$$\overline{\chi}^{2} = N \left(\frac{\chi^{2}_{\text{DP}}}{N_{\text{DP}}} + \frac{\chi^{2}_{\Gamma}}{N_{\Gamma}} + \frac{\chi^{2}_{\text{NA60}}}{N_{\text{NA60}}} + \frac{\chi^{2}_{\text{A2}}}{N_{\text{A2}}} \right)$$

Results

	α	β	γ
BESIII	111(18)	25(10)	22(29)
low	112(15)	23(6)	29(6)
high	109(14)	26(6)	19(5)

Using once-subtracted DR for KT:

• Agreement is restored with DP parameters by BESIII

• One can also describe the $\omega\pi^0$ TFF

2 p		par.	3	par.
	low $\phi_{\omega \pi^0}(0)$	high $\phi_{\omega\pi^0}(0)$	low $\phi_{\omega\pi^0}(0)$	high $\phi_{\omega\pi^0}(0)$
$10^{-2} a [GeV^{-3}]$	3.14(25)	2.63(25)	3.11(28)	2.70(30)
b	3.15(22)	2.59(35)	3.25(26)	2.65(35)
ϕ_b	2.03(14)	1.61(38)	2.03(13)	1.70(27)
$f_{\omega \pi^0}(0)$ GeV ⁻¹	2.314(32)	2.314(32)	2.314(32)	2.315(32)
$\tilde{\phi}_{\omega\pi^0}(0)$	0.207(60)	2.39(46)	0.195(76)	2.48(31)
$\chi^2_{\rm DP}$	0.19	< 0.01	0.10	0.03
$10^4 \chi_{\Gamma}^2$	2.4	2.4	1.1	3.5
χ^2_{A2}	2.3	3.6	2.4	3.7
$\chi^2_{\sf NA60}$	31	35	31	35

$J/\psi ightarrow 3\pi$ decays

- Formalism for J/ψ is completely analogous to ω (V).
- BESIII data [Phys. Lett., B710, 594 (2012)] show ψ/ψ' puzzle:

• The J/ ψ decay seems to be dominated by ho, despite the larger phase space

• One would expect that 0-sub (prediction) would get the basic features

$J/\psi ightarrow 3\pi$ decays

- $\delta_{\pi\pi}(s)$ taken as input:
 - Old solution: [Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Yndurain, Phys. Rev. D83, 074004 (2011)]
 - New solutions: [Pelaez, Rodas, Ruiz De Elvira, Eur. Phys. J. C79, 1008 (2019)]
- Take as central fit the one performed with solution I for $\delta_{\pi\pi}$
- The spread in the other solutions: theoretical uncertainty
- The J/ ψ decay seems to be dominated by ho, despite the larger phase space
- 0-sub (prediction) get the basic features
- 1-sub (fit) improves the description
- 1-sub + *F*-wave [ho_3 (1690)] describes better the movements above \gtrsim 1.5 GeV.

$J/\psi ightarrow 3\pi$ decays

- $\delta_{\pi\pi}(s)$ taken as input:
 - Old solution: [Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Yndurain, Phys. Rev. D83, 074004 (2011)]
 - New solutions: [Pelaez, Rodas, Ruiz De Elvira, Eur. Phys. J. C79, 1008 (2019)]
- Take as central fit the one performed with solution I for $\delta_{\pi\pi}$
- The spread in the other solutions: theoretical uncertainty
- The J/ ψ decay seems to be dominated by ho, despite the larger phase space
- 0-sub (prediction) get the basic features
- 1-sub (fit) improves the description
- 1-sub + *F*-wave [ho_3 (1690)] describes better the movements above \gtrsim 1.5 GeV.

$J/\psi ightarrow 3\pi$ decays: including F wave

• How to improve the description? Include F-wave, $\rho_3(1690)$ (PDG values)

$$F(s,t,u) = F_1(s) + F_1(t) + F_1(u) + \frac{\kappa^2(s)}{16}P'_3(z_s)F_3(s) + \frac{\kappa^2(t)}{16}P'_3(z_t)F_3(t) + \frac{\kappa^2(u)}{16}P'_3(z_u)F_3(u)$$

• Neglect \widehat{F}_3 , so that $F_3(s) = p_3(s) \Omega_3(s)$

• The fit improves significantly, especially around $\sqrt{s} \gtrsim 1.5$ GeV, the main contribution being the *P*-*F*-wave interference.

$J/\psi ightarrow 3\pi$ decays: including F wave

• How to improve the description? Include F-wave, $\rho_3(1690)$ (PDG values)

$$F(s,t,u) = F_1(s) + F_1(t) + F_1(u) + \frac{\kappa^2(s)}{16}P'_3(z_s)F_3(s) + \frac{\kappa^2(t)}{16}P'_3(z_t)F_3(t) + \frac{\kappa^2(u)}{16}P'_3(z_u)F_3(u)$$

• Neglect \widehat{F}_3 , so that $F_3(s) = p_3(s) \Omega_3(s)$

• The fit improves significantly, especially around $\sqrt{s} \gtrsim 1.5$ GeV, the main contribution being the *P*-*F*-wave interference.

$J/\psi ightarrow 3\pi$ decays: additional information

[JPAC Collab., 2304.09736]

Summary

- KT equations are a powerful tool to study 3-body decays
- They allow to implement two-body unitarity in all the three channels (s, t, u).
- For $\omega \to 3\pi$ decays: JPAC Collab., EPJ,C80,1107('20)
 - Using once-subtracted DRs, we are able to reproduce the $\omega
 ightarrow 3\pi$ DP parameters,
 - and the $\omega \to \pi^0 \gamma^*$ transition form factor data.
- For $J/\psi \rightarrow 3\pi$ decays, good agreement with the data is found assuming elastic unitarity (*P* and *F*-waves). JPAC Collab., 2304.09736

- KT equations are a powerful tool to study 3-body decays.
- They allow to implement two-body unitarity in all the three channels (s, t, u).
- Iterative solution converges fast, linear in subtraction constants.
- For $\eta \to 3\pi$:
 - Not well described by the perturbative chiral amplitudes.
 - We have presented an extension of this approach to coupled channels. The extension is quite general.
 - Ēffects of Kk and ηπ amplitudes [f₀(980), a₀(980)] play some role in the DP parameters, tend to improve.
- For $\pi\pi$ scattering:
 - We have applied KT equations to $\pi\pi$ scattering as benchmark.
 - Restricted to S- and P-waves, KT equations are equal to Roy equations.
 - When other waves are included, good comparison is obtained with GKPY equations.
- We have presented a generalization of the KT equations for arbitrary quantum numbers of the decaying particle.
 JPAC Collab., PR,D101,054018('20)
 - Not trivial, because of spin/crossing.
- For $\omega \rightarrow 3\pi$ decays:
 - Using once-subtracted DRs, we are able to reproduce the $\omega \rightarrow 3\pi$ DP parameters,
 - and the $\omega \to \pi^0 \gamma^*$ transition form factor data.
- For $J/\psi \rightarrow 3\pi$ decays, good agreement with the data is found assuming elastic unitarity (*P*and *F*-waves). JPAC collab., 2304.09736

JPAC Collab., EPJ,C78,574('18)

IPAC Collab., EPI.C80.1107('20)

MA, B. Moussallam, EPJ,C77,508('17)

KT and phase space

Generalities about $\eta ightarrow 3\pi$

• In QCD isospin-breaking phenomena are driven by

$$H_{IB} = -(m_u - m_d)\overline{\psi}\frac{\lambda_3}{2}\psi$$

- Isospin-breaking induced by EM & strong interactions are similar in size, but
- $\eta
 ightarrow 3\pi$ is special, since EM effects are smaller

•
$$\Gamma_{\eta \to 3\pi} \propto Q^4$$
, with $Q^{-2} = \frac{m_d^2 - m_u^2}{m_s^2 - (m_u + m_d)^2/2}$

Experimental situation: Several high-statistics studies; |T|² well known across the Dalitz plot
 ⇒ stringent tests for the amplitudes (before getting Q!)

$\eta ightarrow 3\pi^0$	$\eta ightarrow \pi^+\pi^-\pi^0$
Crys. Ball, PRL 87 ,192001('01) Crys. Ball@MAMI, A2, PRC 79 ,035204('09) Crys. Ball@MAMI, TAPS, A2, EPJA 39 ,169('09) WASA-at-COSY, PLB 677 ,24('09) KLOE, PLB 694 ,16('11)	KLOE, JHEP 0805 ,006('08) WASA-at-COSY, PRC 90 ,045207('14) BESIII, PRD 92 ,012014('15) KLOE-2, JHEP 1605 ,019('16)

Previous dispersive approaches to $\eta ightarrow 3\pi$

• Chiral $\mathcal{O}(p^4)$ amplitude fails in describing experiments.

```
Gasser, Leutwyler, Nucl. Phys. B250, 539 (1985)
```

N. Khuri, S. Treiman, Phys. Rev. 119, 1115 (1960)

• Several attemps to include unitarity/FSI/rescattering effects.

Neveu, Scherk, AP57, 39('70); Roiesnel, Truong, NPB187, 293('81); Kambor, Wiesendanger, Wyler, NPB465, 215('96); Anisovich, Leutwyler, PLB375, 335('96); Borasoy, R. Nißler, EPJA26, 383('05); Schneider, Kubis, Ditsche, JHEP1102, 028('11); Kampf, Knecht, Novotný, Zdráhal, PRD84, 114015('11); Colangelo, Lanz, Leutwyler, Passemar, PRL118, 022001('17); Guo, Danilkin, Fernández-Ramírez, Mathieu, Szczepaniak, PL771, 497('17).

• Here we reconsider the KT approach.

 $\pi\pi$ scattering elastic in the decay region. But dispersive approaches require higher energy *T*-matrix inputs:

- π π near 1 GeV rapid energy variation. $f_0(980)$, (K \bar{K})₀
- Double resonance effect $\eta \pi$ ISI, $a_0(980)$, $(K\bar{K})_1$

Abdel-Rehim, Black, Fariborz, Schechter, PRD67, 054001('03)

We propose a generalization to coupled channels $[(K\bar{K})_{0,1}, \eta\pi, (\pi\pi)_{0,1,2}]$ of the KT equations, extending their validity up to the physical $\eta\pi \to \pi\pi$ region. Allows for the study of the influence of a_0, f_0 into the decay region.

Previous dispersive approaches to $\eta \rightarrow 3\pi$

- Chiral $\mathcal{O}(p^4)$ amplitude fails in describing experiments.
- RESOLUTION OF THE TST PROBLESS Several attemps to include unitarity/FSI/rescattering effective Final Received 3 November 1980 received 9 April 1980 Neveu, Scherk, AP57, 39('70); Roiesnel, Truong, NPB187, 293('81); Kambor, Wiesens Leutwyler, PLB375, 335('96); Borasoy, R. Nißler, EPJA26, 383('05); Schneider, Kubis, Ditsci. Novotný, Zdráhal, PRD84, 114015('11); Colangelo, Lanz, Leutwyler, Passemar, PRL118, 022001 Fernández-Ramírez, Mathieu, Szczepaniak, PL771, 497('17).
- Here we reconsider the KT approach.
 - N. Khuri, S. Treiman, F $\pi\pi$ scattering elastic in the decay region. But dispersive approaches require h. T-matrix inputs:
 - harphi $\pi\pi$ near 1 GeV rapid energy variation. $f_0(980)$, $(K\bar{K})_0$
 - **b** Double resonance effect $\eta \pi$ ISI, $a_0(980)$, $(K\bar{K})_1$

Abdel-Rehim, Black, Fariborz, Schechter, PRD67, 054001('03)

We propose a generalization to coupled channels $[(K\bar{K})_{0,1}, \eta\pi, (\pi\pi)_{0,1,2}]$ of the KT equations, extending their validity up to the physical $\eta\pi \to \pi\pi$ region. Allows for the study of the influence of a_0 , f_0 into the decay region.

Previous dispersive approaches to $\eta \rightarrow 3\pi$

- Chiral $\mathcal{O}(p^4)$ amplitude fails in describing experiments.
- RESOLUTION OF THE TST PROBLESS Several attemps to include unitarity/FSI/rescattering effective Final Received 3 November 1980 received 9 April 1980 Neveu, Scherk, AP57, 39('70); Roiesnel, Truong, NPB187, 293('81); Kambor, Wiesens Leutwyler, PLB375, 335('96); Borasoy, R. Nißler, EPJA26, 383('05); Schneider, Kubis, Ditsci. Novotný, Zdráhal, PRD84, 114015('11); Colangelo, Lanz, Leutwyler, Passemar, PRL118, 022001 Fernández-Ramírez, Mathieu, Szczepaniak, PL771, 497('17).
- Here we reconsider the KT approach.
 - N. Khuri, S. Treiman, F $\pi\pi$ scattering elastic in the decay region. But dispersive approaches require h. T-matrix inputs:
 - harphi $\pi\pi$ near 1 GeV rapid energy variation. $f_0(980)$, $(K\bar{K})_0$
 - **b** Double resonance effect $\eta \pi$ ISI, $a_0(980)$, $(K\bar{K})_1$

Abdel-Rehim, Black, Fariborz, Schechter, PRD67, 054001('03)

We propose a generalization to coupled channels $[(K\bar{K})_{0,1}, \eta\pi, (\pi\pi)_{0,1,2}]$ of the KT equations, extending their validity up to the physical $\eta\pi \to \pi\pi$ region. Allows for the study of the influence of a_0 , f_0 into the decay region.

Isospin amplitudes

• Start with well-defined isospin amplitudes:

$$\mathcal{M}^{l,l_z}(\mathbf{s},t,u) = \left\langle \eta \pi; \mathbf{1}, l_z \left| \hat{T}_0^{(1)} \right| \pi \pi; l, l_z \right\rangle = \left\langle l, l_z; \mathbf{1}, 0 | \mathbf{1}, l_z \right\rangle \left\langle \eta \pi \| \hat{T}^{(1)} \| \pi \pi; l \right\rangle$$

• They can be written in terms of a single amplitude $(\eta \pi^0 \rightarrow \pi^+ \pi^-)$, A(s, t, u) (like in $\pi \pi$ scattering):

$$\begin{bmatrix} -\sqrt{3}\mathcal{M}^{0}(s,t,u)\\ \sqrt{2}\mathcal{M}^{1}(s,t,u)\\ \sqrt{2}\mathcal{M}^{2}(s,t,u) \end{bmatrix} = \begin{bmatrix} -\sqrt{3}\mathcal{M}^{0,0}(s,t,u)\\ \sqrt{2}\mathcal{M}^{1,1}(s,t,u)\\ \sqrt{2}\mathcal{M}^{2,1}(s,t,u) \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1\\ 0 & -1 & 1\\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} A(s,t,u)\\ A(t,s,u)\\ A(u,t,s) \end{bmatrix}$$

• Reconstruction theorem (for Goldstone bosons):

J. Stern, H. Sazdjian, N. Fuchs, Phys. Rev. D47, 3814 (1993)

$$A(s,t,u) = -\epsilon_L [M_0(s) - \frac{2}{3}M_2(s) + M_2(t) + M_2(u) \qquad \epsilon_L = \frac{1}{Q^2} \frac{m_K^2 - m_\pi^2}{3\sqrt{3}f_\pi^2} \frac{m_K^2}{m_\pi^2} + (s-u)M_1(t) + (s-t)M_1(u)]$$

• Or in general, "the" KT approximation:

Infinite sum of s-channel PW \rightarrow Truncated sums of s-, t-, and u-channels PWs

• Single variable functions: amenable for dispersion relations.

Partial wave amplitudes

- Summary of previous slide: M¹(s, t, u) is written in terms of A(s, t, u) (and permutations), and A(s, t, u) is written in terms of M₁(w).
- Now, define partial waves: $\mathcal{M}^{l}(s, t, u) = 16\pi\sqrt{2}\sum_{j}(2j+1)\mathcal{M}^{l}_{j}(s)P_{j}(z)$

$$\begin{aligned} \mathcal{M}_0^0(s) &= \epsilon_L \frac{\sqrt{6}}{32\pi} [\mathcal{M}_0(s) + \hat{\mathcal{M}}_0(s)] , \quad \mathcal{M}_0^2(s) = \epsilon_L \frac{-1}{32\pi} [\mathcal{M}_2(s) + \hat{\mathcal{M}}_2(s)] , \\ \mathcal{M}_1^1(s) &= \epsilon_L \frac{\kappa(s)}{32\pi} [\mathcal{M}_1(s) + \hat{\mathcal{M}}_1(s)] , \end{aligned}$$

LHC [$\hat{M}_{l}(s)$]	RHC [<i>M</i> ₁ (s)]
$\hat{M}_{l}(s)$ written as angular averages. Take $M_{0}(s)$ as an example:	$\hat{M}(s)$ no discontinuity along the RHC:
$\hat{M}_{0}(s) = \frac{2}{3} \langle M_{0} \rangle + \frac{20}{9} \langle M_{2} \rangle$	disc $M_l(s)$ = disc $\mathcal{M}'_l(s)$ = = $\sigma_{\pi}(s)t^l(s)^*\mathcal{M}'_l(s)$
$+2(s-s_0)\langle M_1\rangle+\frac{2}{3}\kappa(s)\langle ZM_1\rangle$	$= \sigma_{\pi}(s)t'(s)^{*}\left(M_{l}(s) + \hat{M}_{l}(s)\right)$
$\langle z^n M_l \rangle(s) = \frac{1}{2} \int_{-1}^{\infty} \mathrm{d}z z^n M_l(t(s,z))$	$\sigma_{\pi}(s) = \sqrt{1 - 4m_{\pi}^2/s}$
$\kappa(s) = \sqrt{(1 - 4m_\pi^2/s)\lambda(s, m_\eta^2, m_\pi^2)}$	$\sigma_{\pi}(s)t^{\prime}(s) = \sin \delta_{l}(s) e^{i\delta_{l}(s)}$

Muskhelisvili-Omnès representation

$$\operatorname{disc} M_{l}(s) = \sigma_{\pi}(s)t_{l}^{*}(s)[M_{l}(s) + \hat{M}_{l}(s)]$$

MO (dispersive) representation of M_l(s):

$$\begin{split} M_0(s) &= \Omega_0(s) \big[\alpha_0 + \beta_0 s + \gamma_0 s^2 + \hat{l}_0(s) s^2 \big] , \\ M_1(s) &= \Omega_1(s) \big[\beta_1 s + \hat{l}_1(s) s \big] , \\ M_2(s) &= \Omega_2(s) \big[\hat{l}_2(s) s^2 \big] . \end{split}$$

$$\Omega_{l}(s) = \exp\left[\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{l}(s')}{s'(s'-s)}\right] \text{ (Omnès function/matrix)}$$
$$\hat{l}_{l}(s) = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\sin \delta_{l}(s') \hat{M}_{l}(s')}{|\Omega_{l}(s')| (s')^{m_{l}}(s'-s)}, \quad (m_{0,2} = 2, \ m_{1} = 1)$$

- $m_n^2 + i\varepsilon$ prescription needed. Integral equations solved iteratively.
- Subtraction constants: Most natural way is to match with ChPT:

 $\mathcal{M}(s,t,u) - \overline{\mathcal{M}}_{\chi}(s,t,u) = \mathcal{O}(p^6)$ Descotes-Genon, Moussallam, EPJ,C74,2946(2014)

• Matching conditions: fix α_0 , β_0 , β_1 , γ_0 in terms of ChPT amplitudes (no free parameters).

Coupled channels

Coupled channels: take into account intermediate states other than $(\pi\pi)_{l}$.

$$\begin{split} \mathbf{M}_{0} &= \begin{bmatrix} M_{0} \ G_{10} \\ N_{0} \ H_{10} \end{bmatrix} = \begin{bmatrix} (\eta\pi)_{1} \to (\pi\pi)_{0} \ (K\bar{K})_{1} \to (\pi\pi)_{0} \\ (\eta\pi)_{1} \to (K\bar{K})_{0} \ (K\bar{K})_{1} \to (K\bar{K})_{0} \end{bmatrix}, \\ \mathbf{T}_{0} &= \begin{bmatrix} t_{(\pi\pi)_{0} \to (\pi\pi)_{0}} \ t_{(\pi\pi)_{0} \to (K\bar{K})_{0}} \\ t_{(\pi\pi)_{0} \to (K\bar{K})_{0}} \ t_{(K\bar{K})_{0} \to (K\bar{K})_{0}} \end{bmatrix}, \\ \mathbf{T}_{1} &= \begin{bmatrix} t_{(\eta\pi)_{1} \to (\eta\pi)_{1}} \ t_{(\eta\pi)_{1} \to (K\bar{K})_{1}} \\ t_{(\eta\pi)_{1} \to (K\bar{K})_{1}} \ t_{(K\bar{K})_{1} \to (K\bar{K})_{1}} \end{bmatrix} \\ \text{disc } \mathbf{M}_{0}(\mathbf{s}) &= \mathbf{T}^{0*}(\mathbf{s}) \mathbf{\Sigma}^{0}(\mathbf{s}) \ [\mathbf{M}_{0}(\mathbf{s} + i\epsilon) + \hat{\mathbf{M}}_{0}(\mathbf{s})] \to [1] \\ &+ \ [(\mathbf{M}_{0}(\mathbf{s} - i\epsilon) + \hat{\mathbf{M}}_{0}(\mathbf{s})] \mathbf{\Sigma}^{1}(\mathbf{s}) \ T^{1}(\mathbf{s}) \to [2] \\ &+ \ \mathbf{T}^{0*}(\mathbf{s}) \Delta \mathbf{\Sigma}_{K}(\mathbf{s}) \mathbf{T}^{1}(\mathbf{s}) \to [3] \end{split}$$

Schematically:

Coupled channels: MO representations

MO representation for M₀(s):

$$\begin{bmatrix} M_0(s) G_{10}(s) \\ N_0(s) H_{10}(s) \end{bmatrix} = \mathbf{\Omega}_0(s) \left[\mathbf{P}_0(s) + s^2 \left(\hat{l}_a(s) + \hat{l}_b(s) \right) \right] {}^t\mathbf{\Omega}_1(s)$$

P₀(s) is a matrix of polynomials (subtractions matched to ChPT: no free parameters).
 The Î(s) functions are:

$$\begin{split} \hat{\mathbf{A}}_{a,b}(\mathbf{S}) &= \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{(s')^{2}(s'-s)} \, \Delta X_{a,b}(s') \,, \\ \Delta X_{a} &= \mathbf{\Omega}_{0}^{-1}(s-i\epsilon) \left[\underbrace{\mathcal{T}_{0}^{0*}(s) \, \mathbf{\Sigma}^{0}(s) \, \hat{\mathbf{M}}_{0}(s)}_{[1]} + \underbrace{\hat{\mathbf{M}}_{0}(s) \, \mathbf{\Sigma}^{1}(s) \, \mathbf{T}^{1}(s)}_{[2]} \right]^{t} \mathbf{\Omega}_{1}^{-1}(s+i\epsilon) \,, \\ \Delta X_{b} &= \underbrace{\mathbf{\Omega}_{0}^{-1}(s-i\epsilon) \mathbf{T}^{0*}(s) \, \Delta \mathbf{\Sigma}_{K}(s) \, \mathbf{T}^{1}(s) \, ^{t} \mathbf{\Omega}_{1}^{-1}(s+i\epsilon)}_{[3]} \end{split}$$

Results

Behaviour in different regions:

- $\rm s\sim 1~GeV^2$ Very sharp energy variation,
 - $a_0(980)$ and $f_0(980)$ interference,
 - K^+K^- and $K^0\overline{K}^0$ thresholds.
- $0.7 \lesssim s \lesssim 0.97 \text{ GeV}^2$ Coupled channel largely enhanced compared with elastic amplitude.
- $s \lesssim 0.7 \text{ GeV}^2$ Effect of coupled channels is to reduce the amplitude.
- $s \lesssim s_{th}$ Elastic and inelastic amplitudes indistinguishable.

Chiral $\mathcal{O}(p^4)$ --- Elastic --- Coupled —-

Results

Behaviour in different regions:

- $\rm s\sim 1~GeV^2$ Very sharp energy variation,
 - $a_0(980)$ and $f_0(980)$ interference,
 - K^+K^- and $K^0\overline{K}^0$ thresholds.
- $0.7 \lesssim s \lesssim 0.97 \text{ GeV}^2$ Coupled channel largely enhanced compared with elastic amplitude.
- $s \lesssim 0.7 \text{ GeV}^2$ Effect of coupled channels is to reduce the amplitude.
- $s \leq s_{th}$ Elastic and inelastic amplitudes indistinguishable.

Chiral $\mathcal{O}(p^4)$ --- Elastic --- Coupled —-

Dalitz plot

• DP variables X,Y:
$$X = \frac{\sqrt{3}}{2m_{\eta}Q_{c}}(u-t)$$
, $Y = \frac{3}{2m_{\eta}Q_{c}}((m_{\eta}-m_{\pi^{0}})^{2}-s)-1$

Charged mode amplitude written as:

$$\frac{M_c(X,Y)|^2}{M_c(0,0)|^2} = \frac{1 + aY + bY^2 + dX^2 + fY^3 + gX^2Y}{1 + aY + bY^2 + dX^2 + fY^3 + gX^2Y} + \cdots$$

• Neutral decay mode amplitude $[Q_c \rightarrow Q_n]$:

$$\frac{|M_n(X,Y)|^2}{|M_n(0,0)|^2} = \frac{1+2\alpha |z|^2+2\beta \operatorname{Im}(z^3)}{1+2\alpha |z|^2+2\beta \operatorname{Im}(z^3)} + \cdots$$

		O(p ⁴)	elastic	coupled	KLOE	BESIII
	а	-1.328	-1.156	-1.142(45)	-1.095(4)	-1.128(15)
be	b	0.429	0.200	0.172(16)	0.145(6)	0.153(17)
<u></u>	d	0.090	0.095	0.097(13)	0.081(7)	0.085(16)
- Pa	f	0.017	0.109	0.122(16)	0.141(10)	0.173(28)
	g	-0.081	-0.088	-0.089(10)	-0.044(16)	-
al					P)G
lt	α	+0.0142	-0.0268	-0.0319(34)	-0.031	18(15)
ne	β	-0.0007	-0.0046	-0.0056	-	-
				DECUL Calla	h Dhuis David	000 040041 (00

BESIII Collab., Phys. Rev. D92,012014 (2015) KLOE-2 Collab., JHEP 1605, 019 (2016)

- (Theory) uncertainty estimation:
 - (1) $\eta\pi$ interaction put to zero or to "large" $2 10^3 L_3^r = -3.82 \rightarrow -2.65$
- General trend: improve agreement $[\mathcal{O}(p^4) \rightarrow \text{elastic} \rightarrow \text{coupled}]$
- Particularly relevant: α .

Unitarity and analyticity bounds

• In works by Caprini *et al.* bounds (min and max) of the form factor have been derived.

[EPJ,C74,3209('14); PR,D92,014014('15)]

- $f_{\omega\pi^{0}}^{(\pm)}(s) = f_{\omega\pi^{0}}^{(0)}(s) \pm \delta f_{\omega\pi^{0}}^{(0)}(s)$
- $f^{(0)}_{\omega\pi^0}(s)$ depends on $\Delta f_{\omega\pi^0}(s)$
- $\delta f_{\omega\pi^0}^{(0)}(s) \propto l'$, depends on the value of the TFF for $s \ge (m_\omega + m_\pi)^2$
- High energy data well above our scope...

Tension between low and high energy data?

Meaning of the phase?

- Original solutions around $\phi_{\omega\pi^0}(0)\sim 0,\pi$
- Global fits remain near the original ones...

If $f_{\omega\pi^0}(0)$, *a* are considered as part of a microscopic (lagrangian) calculation, they would be real (hermiticity), and their relative phase would be ± 1 .

On the other hand, we find 2σ deviation: almost real, but not exactly...

Khuri-Treiman equations for $\pi\pi$ scattering

• KT equations for 3-body decays. Crossing: 2-to-2 scattering. Test: $\pi\pi$ scattering.

• KT equations for $\pi\pi$ scattering can be written as Roy-like equations:

Results: Comparison with Roy equations

• Roy equations [PL,36B,353(1971)] and KT equations written as:

$$t_{\ell}^{(l)}(s) = k_{\ell}^{(l)}(s) + \sum_{\ell', l'} \int_{s_{th}}^{\infty} dt' \, K_{\ell\ell'}^{|l'|}(s, t') \, \mathrm{Im} \, t_{\ell'}^{(l')}(t')$$

They differ in the expressions for the polynomial $(k_{\ell}^{(l)}(s))$ and the kernel $(K_{\ell\ell\ell}^{|l'}(s,t'))$.

- Restrict KT to
 - ① S, P-waves $(t_0^{(0)}, t_0^{(2)}, t_1^{(1)})$,
 - ② one subtraction in each channel: only two subtraction constants.
- Difference between KT and Roy equations amplitudes:

$$(t_{\text{KT}})_{\ell}^{(l)}(s) - (t_{\text{Roy}})_{\ell}^{(l)}(s) = \tilde{k}_{\ell}^{(l)}(s) - k_{\ell}^{(l)}(s) + \sum_{\ell', l'} \int_{s_{\text{th}}}^{\infty} dt' \Delta_{\ell\ell'}^{ll'}(4m^2, t') \operatorname{Imt}_{\ell'}^{(l')}(t')$$

- $\Delta_{\ell\ell'}^{ll'}(s,t')$: Difference of kernels is polynomial (logarithmic terms cancel).
- Five conditions that can be fulfilled with the two subtraction constants.

KT equations and Roy equations are equal.

- A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
- B: two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

- Take a succesful parameterization of the amplitude as input for Imt⁽¹⁾_l(s), and compare the output Ret⁽¹⁾_l(s)
 Madrid group, PR,D83,074004(2011)
 - A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
 - **B**: two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

- Take a succesful parameterization of the amplitude as input for Imt⁽¹⁾_ℓ(s), and compare the output Ret⁽¹⁾_ℓ(s)
 Madrid group, PR,D83,074004(2011)
 - A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
 - B: two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

- Take a succesful parameterization of the amplitude as input for Imt⁽¹⁾_l(s), and compare the output Ret⁽¹⁾_l(s)
 Madrid group, PR,D83,074004(2011)
 - A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
 - **B**: two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

• Threshold parameters (right):

$$\frac{m^{2\ell}}{p^{2\ell}(s)} \operatorname{Re} t_{\ell}^{(l)}(s) = a_{\ell}^{(l)} + b_{\ell}^{(l)} \frac{p^2(s)}{m^2} + \cdots$$

• Poles and residues (bottom):

$$t_{II}^{-1}(s) = t_I^{-1}(s) + 2i\sigma(s) + t_{II}(s) \simeq \frac{\tilde{g}_p^2}{s - s_p} + \cdots$$

PR,D83,074004('11); PRL,107,072001('11); PL,B749,399('15)

JPAC Collab., EPJ,C78,574('18)

	KT-A	KT-B	GKPY—CFD
$a_0^{(0)}$	0.217	0.213	0.221(9)
$b_0^{(0)}$	0.274	0.275	0.278(7)
$a_0^{(2)}$	-0.044	-0.047	-0.043(8)
$b_0^{(2)}$	-0.078	-0.079	-0.080(9)
$10^3 \cdot a_1^{(1)}$	37.5	37.9	38.5(1.2)
$10^3 \cdot b_1^{(1)}$	5.6	5.7	5.1(3)
$10^4 \cdot a_2^{(0)}$	17.8	17.8	18.8(4)
$10^4 \cdot b_2^{(0)}$	-3.4	-3.4	-4.2(1.0)
$10^4 \cdot a_2^{(2)}$	1.9	1.8	2.8(1.0)
$10^4 \cdot b_2^{(2)}$	-3.2	-3.2	-2.8(8)
$10^5 \cdot a_3^{(1)}$	5.7	5.7	5.1(1.3)
$10^5 \cdot b_3^{(1)}$	-4.0	-4.0	-4.6(2.5)

	KT-A	KT-B	GKPY—CFD
$\sqrt{s_{\sigma}}$ (MeV)	(448, 270)	(448, 269)	$(457^{+14}_{-13}, 279^{+11}_{-7})$
$ g_{\sigma} $ GeV	3.36	3.37	$3.59^{+0.11}_{-0.13}$
$\sqrt{s_{\rho}}$ (MeV)	(762.2, 72.4)	(763.4, 73.5)	$(763.7^{+1.7}_{-1.5}, 73.2^{+1.0}_{-1.1})$
g _P	5.95	6.01	$6.01^{+0.04}_{-0.07}$
$\sqrt{s_{f_0}}$ (MeV)	(1000, 24)	(995, 26)	$(996 \pm 7, 25^{+10}_{-6})$
$ g_{f_0} $ (GeV)	2.4	2.3	2.3 ± 0.2
$\sqrt{s_{f_2}}$ (MeV)	(1275.1, 89.5)	(1268.9, 86.4)	$(1267.3^{+0.8}_{-0.9}, 87 \pm 9)$
g_{f_2} (GeV ⁻¹)	5.6	5.5	5.0 ± 0.3

Khuri-Treiman equations for spin

- $\eta \rightarrow 3\pi, \pi\pi \rightarrow \pi\pi$: J = 0, no spin complications.
- $\omega \to 3\pi$: single amplitude, F(s, t, u) = F(s, u, t) = F(t, s, u). J = 1 particular case.
- For general *J* ≠ 0, there are more than a single amplitude, and the *t*-, *u*-isobar amplitudes related with *s*-isobar through crossing.

PC	J _{min}	1	notation (for $I = 0, 1$)
++	1	odd	aj
+-	1	even	hj
-+	0	odd	π_j
	0	even	ω_J/ϕ_J

Crossing symmetry

$$\mathcal{A}^{abcd}(\epsilon(p_X), p_3; p_1, p_2) = \langle \pi^c(p_1) \pi^d(p_2) | \hat{T} | X^a_J(\epsilon(p_X)) | \pi^b(p_3) \rangle$$

• Definition of s- and t-channel helicity amplitudes:

 $\mathcal{A}_{\lambda}^{(s)abcd}(s,t,u) \equiv \mathcal{A}^{abcd}(\epsilon_{\lambda}^{(s)}(p_{X}),p_{3};p_{1},p_{2})$

$$\mathcal{A}_{\lambda'}^{(t)acbd}(t,s,u) \equiv \mathcal{A}^{abcd}(\epsilon'_{\lambda'}^{(t)}(p'_{X}), -p'_{1}, p'_{2}, -p'_{3})$$

• Crossing, helicity amplitudes: $\mathcal{A}_{\lambda'}^{(t)acbd}(t, s, u) = \sum_{\lambda} \mathcal{A}_{\lambda\lambda'}^{J}(\omega_t) \mathcal{A}_{\lambda\lambda'}^{(s)abcd}(s, t, u)$ Jacob, Wick, Ann.Phys.,7404('59); Trueman, Wick, Ann.Phys.,26,322('64);

Hara, PTP,45,584('71); Martin & Spearman ('70);

- Crossing, Isospin: $\mathcal{A}_{\lambda'}^{(t)acbd}(t,s,u) = (-1)^{\lambda'} \mathcal{A}_{\lambda'}^{(s)acbd}(t,s,u)$
- Combining both results:

$$\mathcal{A}_{\lambda}^{(s)abcd}(s,t,u) = \sum_{\lambda'} (-1)^{\lambda} d_{\lambda'\lambda}^{J}(\omega_{t}) \mathcal{A}_{\lambda'}^{(s)acbd}(t,s,u)$$

Why is this relation so important?

It allows the relation between the same one-variable functions (helicity partial waves or helicity isobars) for s and t.

KT decomposition & equations

• Isospin projection:

$$\mathcal{A}_{\lambda l}(s,t,u) \equiv \frac{1}{(2l+1)} \sum_{a,b,c,d} P_{abcd}^{(l)} \mathcal{A}_{\lambda}^{(s)abcd}(s,t,u)$$

• KT decomposition in terms of isobars:

$$\begin{aligned} \mathcal{A}_{\lambda l}(s,t,u) &= \sum_{j \ge |\lambda|}^{j_{\max}} (2j+1) \ d_{\lambda 0}^{j}(\theta_{s}) \ a_{j\lambda l}(s) \\ &+ \sum_{\lambda' j' l'} (-1)^{\lambda} \ (2j'+1) \ d_{\lambda' \lambda}^{l}(\omega_{t}) \ d_{\lambda' 0}^{j'}(\theta_{t}) \ a_{j' \lambda' l'}(t) \ \frac{1}{2} C_{ll'} \\ &+ \sum_{\lambda' j' l'} (-1)^{\lambda'} (2j'+1) \ d_{\lambda' \lambda}^{l}(\omega_{u}) \ d_{\lambda' 0}^{j'}(\theta_{u}) \ a_{j' \lambda' l'}(u) \ \frac{1}{2} C_{ll'} \ (-1)^{l+l'} \end{aligned}$$

Discontinuity:

$$\Delta a_{j\lambda l}(s) = \rho(s)t_{jl}^*(s) \left(a_{j\lambda l}(s) + \overline{a}_{j\lambda l}(s)\right) ,$$

Inhomogeneity:

$$\overline{a}_{j\lambda l}(s) = (-1)^{\lambda} \sum_{l'j'\lambda'} \frac{1}{2} C_{ll'} \int \mathrm{d}\cos\theta' d^{j}_{\lambda 0}(\theta') d^{j}_{\lambda'\lambda}(\omega_{t'}) d^{j'}_{\lambda'0}(\theta'_{t}) a_{j\lambda' l'}(t')$$

• One last point: kinematical singularities and constraints fully taken into account in the paper. Miguel Albaladejo (IFIC) J/ψ and ω decays to 3π with KT equations 20/0

$\pi\pi$ solutions

