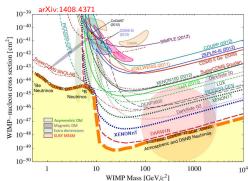
Luca Marsicano

INFN-Genova

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 947715 (ERC Starting Grant POKER, 2020).

Outline


- Introduction
- The NA64 experiment
- The POKER project
- 4 Conclusions

The dark matter search

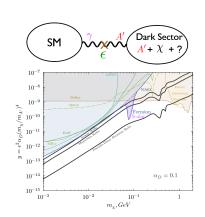
Introduction 0000

> Dark matter: it is there, but very little is known about it! What is it? Where did it come from?

- "WIMP miracle:" electroweak scale masses ($\simeq 100$ GeV) and DM annihilation cross sections (10^{-36} cm^2) give correct dark matter density / relic abundances. No need for a new interaction!
- Intense experimental program searching for a signal in this mass region. So far, no positive evidences have been found
- What about light dark matter, in the mass range 1 MeV \div 1 GeV?

Introduction

The light dark matter hypothesis can explain the observed relic abundance, provided a new interaction mechanism between SM and dark sector exists¹

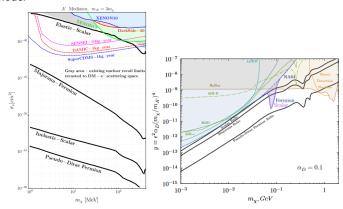

 Simplest possibility: "vector-portal". DM-SM interaction through a new U(1) gauge-boson ("dark-photon") coupling to electric charge

Model parameters:

- Dark-photon mass, $m_{A'}$ and coupling to electric charge ε
- Dark matter mass, m_{χ} and coupling to dark photon, q_D ($\alpha_D \equiv q_D^2/4\pi$)

Experimental searches:

- A comprehensive LDM experimental program must investigate **both** the existence of χ particles and of dark photons
- Experiments at accelerators at the intensity frontier are particularly suited to explore this paradigm


¹For a comprehensive review: 1707.04591, 2005.01515, 2011.02157

Light dark matter search at accelerators

Introduction

0000

- Direct DM searches are typically focused one the > 1 GeV masses, have lower sensitivity in the sub-GeV mass range
 - $E_R \propto 2v^2 M_{_Y}^2 / M_N, v \simeq 3 \cdot 10^{-4} c$
 - Ongoing effort to overcome these limitations (e.g.: χ e⁻ scattering).
- The low-energy LDM-SM interaction is strongly dependent from the DM velocity, with significant σ reduction depending on the details of the model

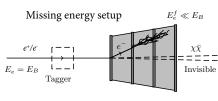
Three main production mechanisms with $e^+ - e^-$ beams:

A'-strahlung

Introduction

- Radiative A' emission in nucleus FM field
- forward boosted, $Z^2 \alpha_{EM}^3$ scaling
- Non-resonant e^+e^- annihilation
 - Forward backward emission in the CM frame
 - $Z\alpha_{EM}^2$ scaling
- Resonant e^+e^- annihilation
 - Resonant, Breit-Wigner like cross section with $M_{A'} = \sqrt{2m_e E}$
 - Zα_{EM} scaling
 - Most efficient LDM production process for given kinematics²

²L. Marsicano et al., Phys. Rev. Lett. 121 (2018) 041802.

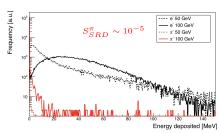

Fixed active thick-target LDM searches: missing energy experiments

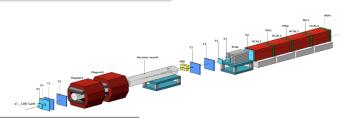
Missing energy approach - the active thick target is the detector

- 2 A^\prime are produced from e^+/e^- in the shower and promptly decay to LDM particles χ
- \odot χ particles escape the detector without interacting

Missing Energy Signature

- Specific beam structure: impinging particles impinging "one a ta time" on the active target
- Deposited energy E_{dep} measured event-by-event
- Signal: events with large $E_{miss} = E_B E_{den}$
- Backgrounds: events with ν / long-lived (K_L) / highly penetrating (μ) escaping the detector

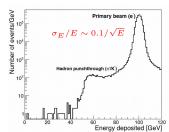


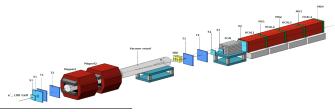

NA64 Experiment

Missing energy experiment at CERN North Area H4 line - 100 GeV e^- beam³ H4 line: few $10^7~e^-/{\rm spill}$ with energy resolution <1% and hadron contamination $\sim 0.5\%$

Experiment Setup

- Beam identification system: magnetic spectrometer and SRD tagging (MBPL magnets)

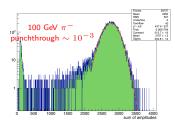

³Phys.Rev.Lett. 123 (2019) 121801

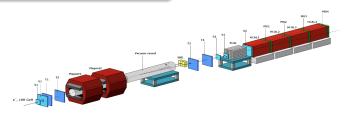

NA64 Experiment

Missing energy experiment at CERN North Area H4 line - 100 GeV e^- beam³ H4 line: few $10^7~e^-/{\rm spill}$ with energy resolution <1% and hadron contamination $\sim 0.5\%$

Experiment Setup

- Beam identification system: magnetic spectrometer and SRD tagging (MBPL magnets)
- EM-Calorimeter: 40X₀, Pb/Sc Shashlik

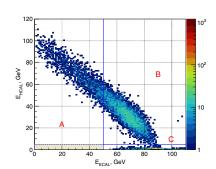

³Phys.Rev.Lett. 123 (2019) 121801

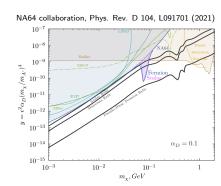

NA64 Experiment

Missing energy experiment at CERN North Area H4 line - 100 GeV e^- beam³ H4 line: few $10^7~e^-/{\rm spill}$ with energy resolution <1% and hadron contamination $\sim 0.5\%$

Experiment Setup

- Beam identification system: magnetic spectrometer and SRD tagging (MBPL magnets)
- EM-Calorimeter: 40X₀, Pb/Sc Shashlik
- Plastic scintillator VETO
- Hadron calorimeter: 4 m, 30 λ_I

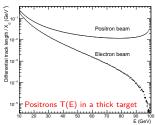




³Phys.Rev.Lett. 123 (2019) 121801

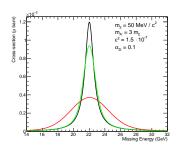
NA64-e results

- NA64 results based on $2.84 \cdot 10^{11}$ EOT collected during 2016-2018
- After applying all selection cuts, no events observed in the signal region $E_{ECAL} < 50$ GeV, $E_{HCAL} < 1$ GeV
- Expected number of background events ~ 0.5 compatible with null observation
- Most competitive exclusion limits in large portion of the LDM parameters space
- Secondary positron annihilation contribution included in recent analysis
- Significant statistics (×3 published data) collected in 2022, analysis ongoing.


POKER: POsitron resonant annihilation into darK mattER

An optimized light dark matter search with positrons in the NA64 framework⁴

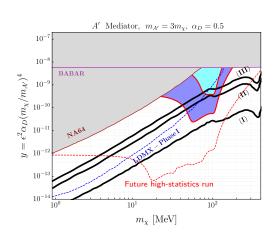
Signal production reaction: $e^+e^- \to A' \to \chi \overline{\chi}$


Large event yield:
$$N_s^{annihil} \propto Z \alpha_{EM}$$
 vs $N_s^{brem} \propto Z^2 \alpha_{EM}^3$

Missing energy distribution shows a peak around $E_R = \frac{M_{A'}^2}{2m} \rightarrow$ clear signal signature

Project goal

- Perform a preliminary missing energy measurement with a positron beam, using a new high resolution detector ($PbWO_4$ calorimeter) replacing the existing NA64 ECAL
- Demonstrate the technique and set the basis of the first optimized light dark matter search at a positron-beam facility


POKER sensitivity to LDM

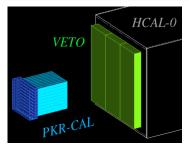
Pilot measurement at the H4 beamline with 100 GeV e^+ beam⁵

- Baseline scenario: $5 \cdot 10^{10}$ e^+ OT, 50 GeV missing energy threshold
- Aggressive scenario: $3 \cdot 10^{11}$ e^+ OT, 25 GeV missing energy threshold
- Future experimental program with multiple $10^{13} e^+ OT$ runs at different energies

Pilot run sensitivity - 0 bck

The POKER project

 $^{^{5}}$ Currently discussing within NA64 and SPSC to possibly run the pilot measurement in 2024


POKER: Active Target

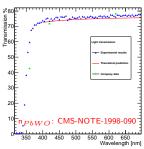
Calorimeter in PbWO_4 crystals, SiPM readout

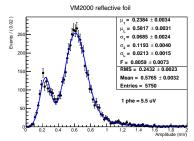
- 9×9 matrix of $20 \times 20 \times 220$ mm³ with 4-layers pre-shower ($20 \times 20 \times 20$ mm³ crystals): total 33.7 X_0
- Energy resolution: $\frac{\sigma_E}{E} \sim 2.5\%/\sqrt{E} \oplus (0.5 \div 1)\%$
- $LY \sim 2.5\,\mathrm{phe}/MeV$: 4x SiPM 6x6 mm², 10 $\mu\mathrm{m}$ cell.

Critical aspect: radiation damage

- EM dose up to 200 $\frac{\mathrm{rad}}{\mathrm{h}}$ (CMS ecal max 500 $\frac{\mathrm{rad}}{\mathrm{l}}$)
- Possible solutions: Light induced annealing, beam-spot rastering
- $\phi_n \le 10^3 \text{ n}_{eq} \text{ cm}^{-2} \text{s}^{-1}$ no significant effect expected

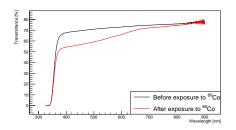
PbWO₄ crystals characterization


Characterization campaign of crystal samples from Crytur


Longitudinal transmittance

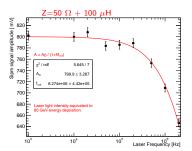
- Measurement performed with spectrophotometer (CERN, Crystals Clear lab)
- Results: T > 70% at $\lambda = 450$ nm for all tested samples

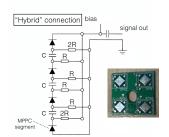
Light Yield


- LY measurement with cosmic rays: telescope with plastic scintillator counters, thermostated crystals (18°)
- Readout: 4x S14160-6010 SiPM (6x6 mm², 10 μ m pixel size)
- Single phe amplitude measured with laser pulser
- Resulting LY $\simeq 5 \ phe/MeV$

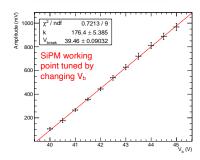
PbWO₄ crystals- radiation hardness characterization

- $90 \times 2 \times 2 \times 22$ cm³ crystals and $45 \times 2 \times 2 \times 20$ cm3 crystals tested at the "Strahlenzentrum" of Gießen
- crystals exposed to intense ⁶⁰Co radioactive source - absorbed dose: ~30 Gy
- Light transmission measured with Hitachi spectrophotometer before and after exposure; evaluated radiation damage $d_k = \frac{1}{L} \cdot \ln \frac{T_{\text{before}}}{T_{\text{cons}}}$
- 20-cm crystals compatible with Crytur specifications, 22-cm crystals slightly worse -"best" crystals selected for the core of the POKER active target




Crystals annealed in oven after the characterization

The POKER project

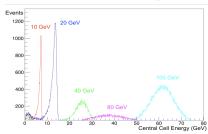


- POKER readout: 4 SiPMs per crystal. 10 μm pixel size to mitigate saturation effects
- Custom HV supply chain to minimize gain variations due to bias current. Ad-hoc PCB design.

The POKER project 00000000

The POKERINO prototype

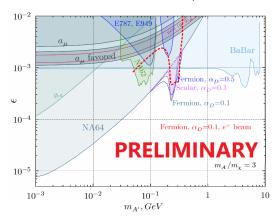
POKERINO: 3×3 crystals prototype, readout by SiPMs, to validate design and technical solutions adopted for the POKER active target (mechanics, light readout, electronics) and evaluate performance


Performed tests:

- LY measurements and response uniformity tests with cosmic rays @INFN-Genova (EEE setup)
- Summer 2022: first measurement on beam at CERN H4 (4h test, courtesy of NA64) → critical effect of power supply (CAEN A1539P), when SiPMs are operated with high-frequency stochastic pulses

Future tests: summer 2023, 1 week dedicated measurement at CERN H8

Different current for each beam energy value



First e^+ beam measurement at NA64

While POKER R&D is ongoing, a first measurement with a 100 GeV positron beam has beam performed with the current NA64 setup

Aim of the measurement: background studies (large hadron contamination in positron mode), first upper limit optimized for the resonant annihilation channel

- NA64 "invisible setup", missing energy threshold $E_{miss} \lesssim 60$ GeV
- Blind-analysis strategy (signal-like region EECAL < 50 GeV, EHCAL < 3 GeV)
- expected background: 0.1 events main contribution from hadron beam contaminants $k^+ \to e^+ \pi_0 \, \nu_e + {\rm fake\text{-}SRD} \, {\rm tag}$

Data unblinding in the next few weeks

Conclusions

- Light dark matter scenario (MeV-to-GeV range) is largely unexplored and theoretically well motivated
 - A collection of complementary searches exploring this paradigm is required. Among these, searches at accelerator play a key role.
- NA64 is an electron-beam missing-energy experiment at CERN
 - NA64 produced several important results in the search for dark photon: its sensitivity could be further improved by using a positron beam
- POKER is an ERC funded project, aiming to perform the first optimized missing energy measurement with a positron beam
 - The project foresees the realization of a high-resolution active target to be implemented in the NA64 setup
 - Detector R&D is currently ongoing, including crystals characterization, SiPM and electronics studies
 - The possibility to run the pilot measurement in 2024 is currently being discussed
 - NA64 has performed a preliminary measurement with a positron beam.
 Data are currently being analyzed.

Thanks for your attention!