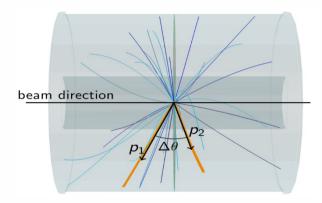
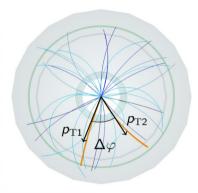
Two-particle angular correlations of identified particles in pp collisions at $\sqrt{s} = 13$ TeV with ALICE


Daniela Ruggiano on behalf of ALICE Collaboration


Warsaw University of Technology

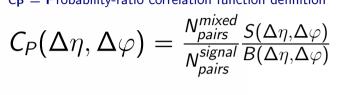
HADR

$\Delta\eta\Delta\varphi$ angular space

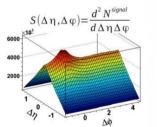
pseudorapidity : $\eta = -\ln|tg\frac{\theta}{2}|$; polar angle : θ ; particle momentum : p;

Fig. A.Zaborowska

transverse momentum : $p_{\rm T}$; azimuthal angle : φ .

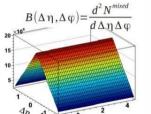

5-9/06/2023, HADRON 2023

Daniela Ruggiano

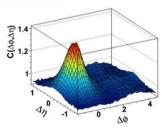

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

variables					
$\Delta \eta = \eta_1 - \eta_2;$					
$\Delta \varphi = \varphi_1 - \varphi_2;$					

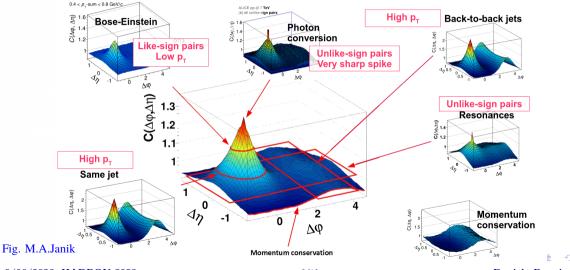
 $C_{\mathbf{P}} = \mathbf{P}$ robability-ratio correlation function definition



SIGNAL distribution

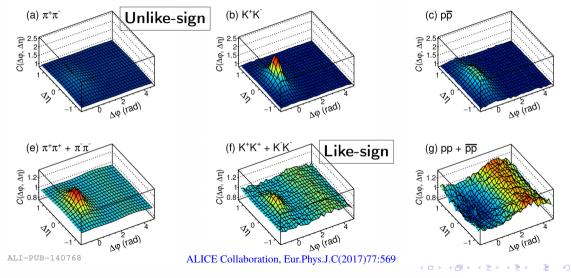

5-9/06/2023, HADRON 2023

BACKGROUND distribution

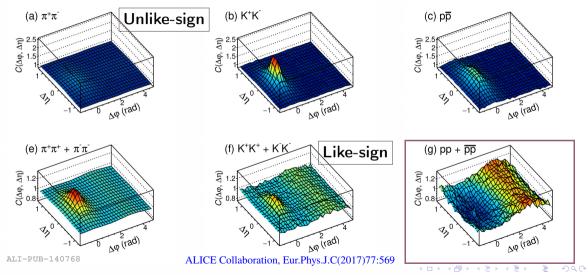


2/16

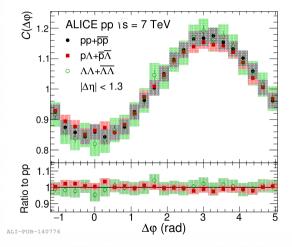
RATIO signal/background



Anatomy of angular correlations


5-9/06/2023, HADRON 2023

Identified mesons and baryons

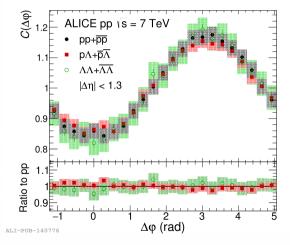

5-9/06/2023, HADRON 2023

Identified mesons and baryons

5-9/06/2023, HADRON 2023

Can we understand the anti-correlation of baryons?

Possible explanation:

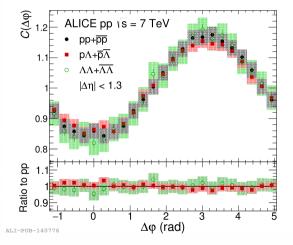

- \Box Small $p_{\rm T}$ range
- □ Coulomb repulsion
- \Box other baryon particles
- □ Fermi-Dirac quantum statistics

 \Box Strong Final-State Interaction

Daniela Ruggiano

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Can we understand the anti-correlation of baryons?



Possible explanation:

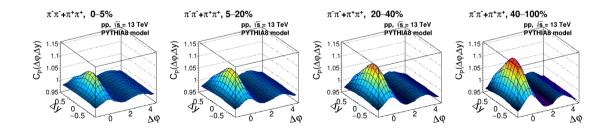
- \boxtimes Small p_{T} range
- \boxtimes Coulomb repulsion
- \boxtimes other baryon particles
- ⊠ Fermi-Dirac quantum statistics
- \boxtimes Strong Final-State Interaction

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Can we understand the anti-correlation of baryons?

Possible explanation:

- \boxtimes Small p_{T} range
- \boxtimes Coulomb repulsion
- \boxtimes other baryon particles
- ⊠ Fermi-Dirac quantum statistics
- \boxtimes Strong Final-State Interaction

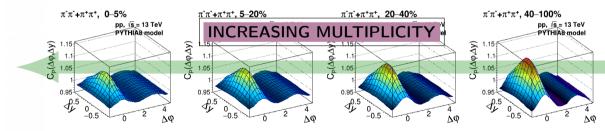

How does anti-correlation behave in different multiplicity classes and collision systems???

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Probability-ratio definition limitation

pp, p–Pb and Pb–Pb results cannot be compared easily:

- Using the probability ratio definition we have:
- \Box difference in multiplicities
- \Box trivial multiplicity scaling 1/N



< □ > < / → >

Probability-ratio definition limitation

pp, p–Pb and Pb–Pb results cannot be compared easily:

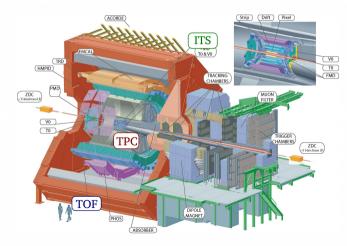
- Using the probability-ratio definition we have:
- \Box difference in multiplicities
- \Box trivial multiplicity scaling 1/N

Analysis strategy

- How do we overcome the trivial multiplicity scaling 1/N issue?
 - Use a rescaled two-particle cumulant definition (C_C) for correlation functions:

$$C_{C}(\Delta y \Delta \varphi) = \frac{N_{av}}{\Delta y \Delta \varphi}(\mathsf{R}_{2})$$

- $-R_2 =$ is the probability ratio correlation function 1.
- N_{av} is the average number of particles produced in the analyzed multiplicity classes;
- Change $\eta \to y$ (pseudorapidity to rapidity) because the latter is more natural for identified particles: $y = \frac{1}{2} \ln(\frac{E + p_z c}{E p_z c})$


Phys. Rev. C 86 (2012), 064902.

5-9/06/2023, HADRON 2023

Daniela Ruggiano

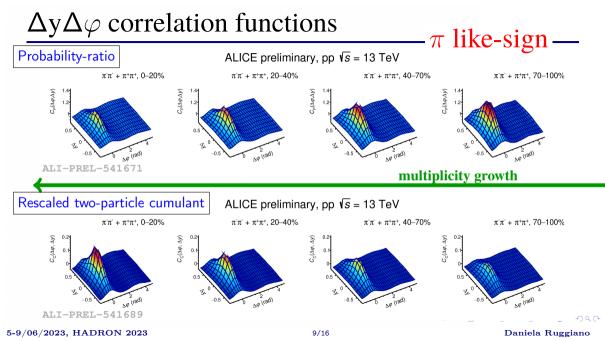
Data samples – analysis

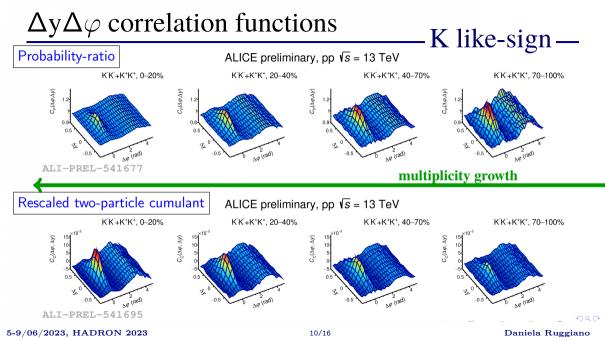
■ pp collisions at 13 TeV registered by ALICE in 2016, 2017 and 2018.

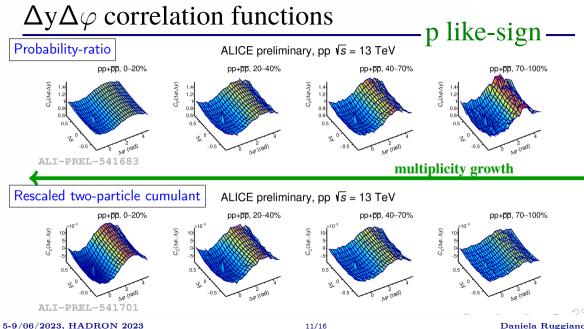
■ Tracking:

□ Inner Tracking System (ITS);
□ Time Projection Chamber (TPC);

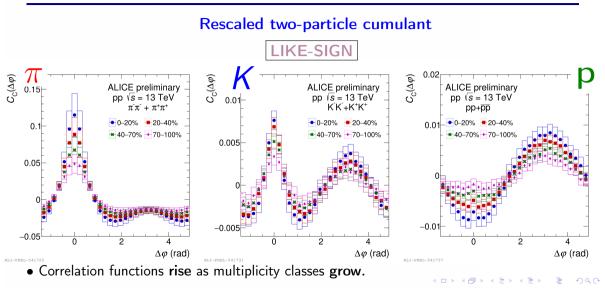
Particle Identification:

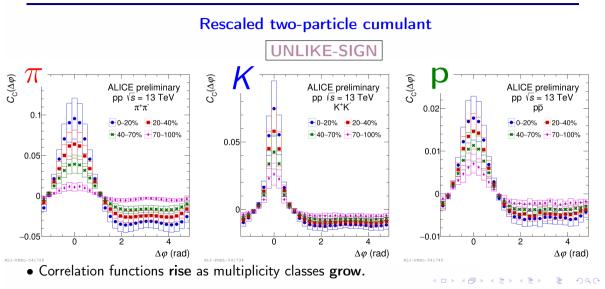

□ Time Projection Chamber (TPC);
□ Time of Flight (TOF);


Kinematic cuts:


- $\Box |y| < 0.5;$
- □ pions : $0.2 < p_{\rm T} < 2.5 \text{ GeV/c}$;
- □ kaons : $0.5 < p_T < 2.5 \text{ GeV/c}$;
- □ protons : $0.5 < p_{\rm T} < 2.5$ GeV/c.

Daniela Ruggiano


5-9/06/2023, HADRON 2023



Projection of $\Delta y \Delta \varphi$ correlation functions

5-9/06/2023, HADRON 2023

Projection of $\Delta y \Delta \varphi$ correlation functions

5-9/06/2023, HADRON 2023

π like-sign — **PYTHIA8** Rescaled two-particle cumulant **EPOS** ALICE preliminary pp $\sqrt{s} = 13 \text{ TeV}$ $\pi \pi^- + \pi^+ \pi^+, 0-20\%$ 20-40% 40-70% 70-100% DATA PYTHIA8 FPOS $\Delta \varphi$ (rad) $\Delta \varphi$ (rad) $\Delta \varphi$ (rad)

AT.T-PREL-541761

 $C_{\rm C}(\Delta \varphi)$

0.05

0.05 data-MC)

• The Monte Carlo models are able to reproduce the correlation function well for mesons.

5-9/06/2023, HADRON 2023

Daniela Ruggiano

 $\Delta \phi$ (rad)

PYTHIA8 Rescaled two-particle cumulant **EPOS** $C_{C_{C_{0}}(\Delta \varphi)}^{C_{C_{0}}(\Delta \varphi)}$ ALICE preliminary 40-70% 70-100% 20-40% pp **√***s* = 13 TeV DATA PYTHIA8 K⁺+K⁺K⁺. 0–20% FPOS 0.005 (data-MC) $\Delta \varphi$ (rad) $\Delta \varphi$ (rad) $\Delta \varphi$ (rad) $\Delta \phi$ (rad)

ALI-PREL-541767

• The Monte Carlo models are able to reproduce the correlation function well for mesons.

5-9/06/2023, HADRON 2023

Daniela Ruggiano

K like-sign —

PYTHIA8 Rescaled two-particle cumulant **EPOS** C₆(Δφ) ALICE preliminary pp $\sqrt{s} = 13$ TeV 20-40% 40-70% 70-100% DATA PYTHIA8 $pp+\overline{pp}, 0-20\%$ FPOS 0.005 -0.005 0.0 data-MC) $\Delta \varphi$ (rad) $\Delta \varphi$ (rad) $\Delta \phi$ (rad) $\Delta \phi$ (rad)

ALI-PREL-541773

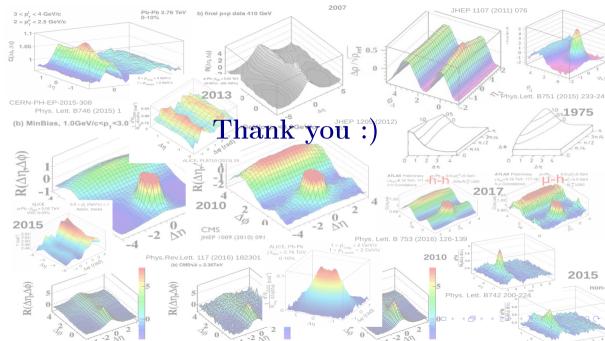
• Baryonic correlations cannot be reproduced by MC models: no anti-correlation is visible.

5-9/06/2023, HADRON 2023

Daniela Ruggiano

p like-sign —

Summary


 $\Box \Delta y \Delta \varphi$ correlation functions:

- probability ratio definition;
- \circ rescaled two-particle cumulant definition;
- □ Comparison with Monte Carlo generators (PYTHIA8 and EPOS)
 - \circ unable to reproduce the anti-correlation in baryon-baryon pair particles;

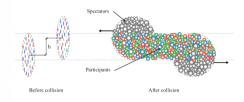
■ TAKE-HOME MESSAGE:

Rescaled two-particle cumulant definition is the most appropriate for multiplicity dependence studies because it allow to untangle and delve into the various phenomena that contribute to the structure of the $\Delta y \Delta \varphi$ correlation function. The baryon anti-correlation remains to be understood.

イロト イポト イヨト イヨト

Backup slides

Multiplicity classes



0-5% : most central collision

80-100% : most peripheral collision

Parameter b is defined as the distance perpendicular to the direction of the radius between two nuclei.

- For central collisions $b \sim 0$;
- For peripheral collisions b > 2R;
- In Not measured directly \rightarrow estimated from centrality

(日)

5-9/06/2023, HADRON 2023

Э

N_{av} estimation

$$C(\Delta y \Delta \varphi) = \frac{N_{av}}{\Delta y \Delta \varphi}(R_2)$$

 $\rm N_{av}$ is the average number of particles produced in the multiplicity classes analyzed after applying the efficiency corrections;

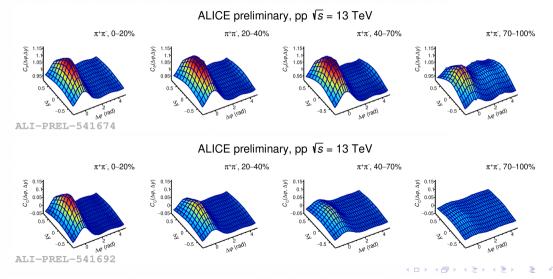
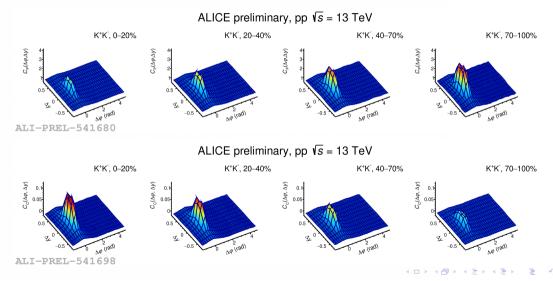
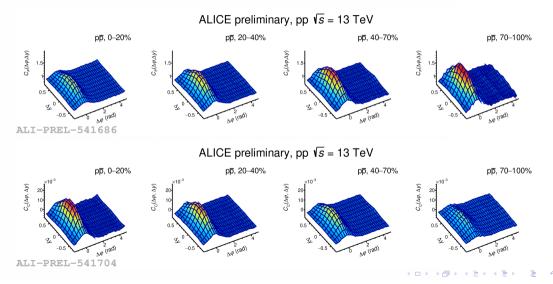

Nav estimation	0-20%	20-40%	40-70%	70-100%
Pions	5.5	3.25	2.1	1.3
Kaons	0.65	0.35	0.2	0.1
Protons	0.3	0.2	0.1	0.06

Table: $N_{\rm av}$ values estimated for all particles involved in the analysis, i.e., pions, kaons and protons, and for the multiplicity classes involved. The values are applied as a normalization factor to the correlation function $\Delta y \Delta \varphi$ defined as the rescaled two-particle cumulant.


STAR collaboration, Phys. Rev. C 86 (2012), 064902.

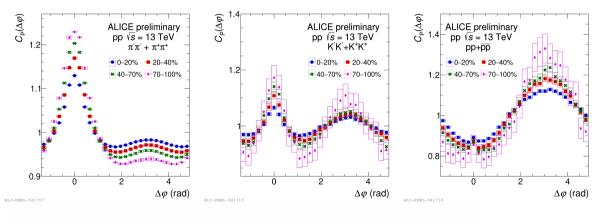
э


▲ロト ▲圖 ト ▲ 国ト ▲ 国ト

5-9/06/2023, HADRON 2023

5-9/06/2023, HADRON 2023

5-9/06/2023, HADRON 2023

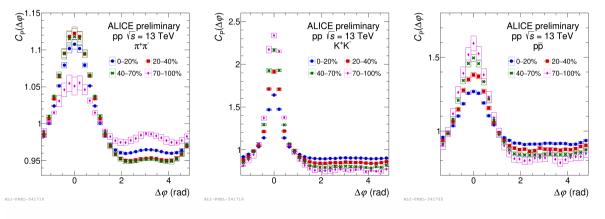

Projection of $\Delta y \Delta \varphi$ correlation functions probability ratio definition

5-9/06/2023, HADRON 2023

Daniela Ruggiano

Projection of $\Delta y \Delta \varphi$ correlation functions

Probability ratio



Daniela Ruggiano

< □ > < 同 >

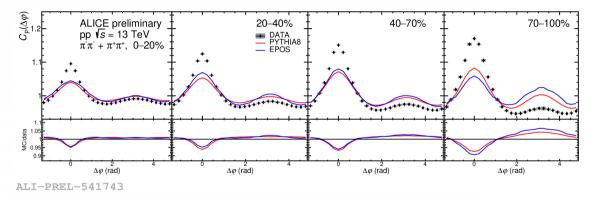
Projection of $\Delta y \Delta \varphi$ correlation functions

Probability ratio

5-9/06/2023, HADRON 2023

Daniela Ruggiano

< □ > < 同 >

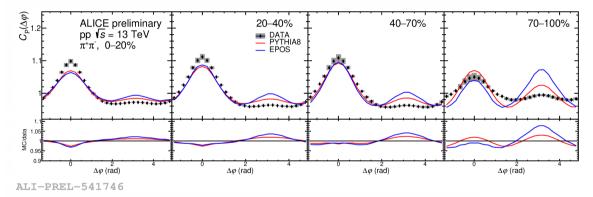

$\underset{\text{probability ratio definition}}{\text{Comparison to MC models}}$

5-9/06/2023, HADRON 2023

Daniela Ruggiano

イロト イヨト イヨト イヨ

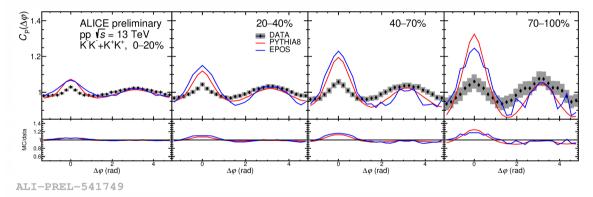
Probability ratio



5-9/06/2023, HADRON 2023

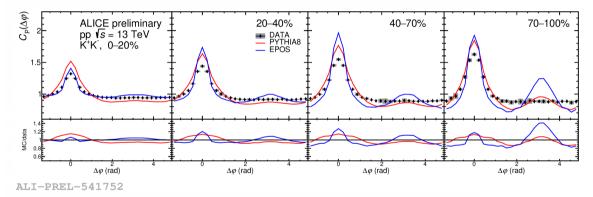
Daniela Ruggiano

< □ > < @ >


Probability ratio

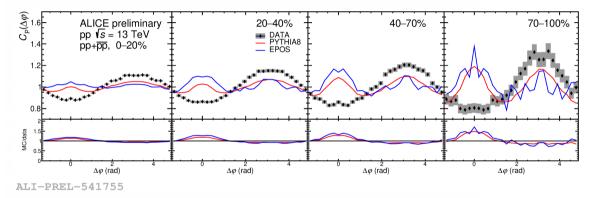
5-9/06/2023, HADRON 2023

Daniela Ruggiano


Probability ratio

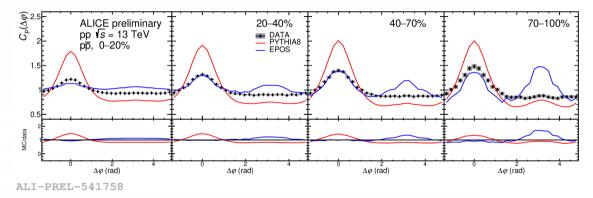
5-9/06/2023, HADRON 2023

Daniela Ruggiano


Probability ratio

5-9/06/2023, HADRON 2023

Daniela Ruggiano

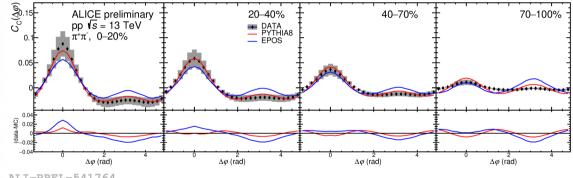

Probability ratio

5-9/06/2023, HADRON 2023

Daniela Ruggiano

Probability ratio

5-9/06/2023, HADRON 2023

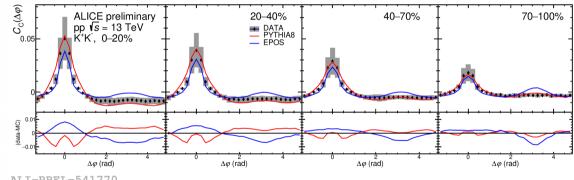

Daniela Ruggiano

Comparison to MC models rescaled two-particle cumulant definition

5-9/06/2023, HADRON 2023

Daniela Ruggiano

Rescaled two-particle cumulant

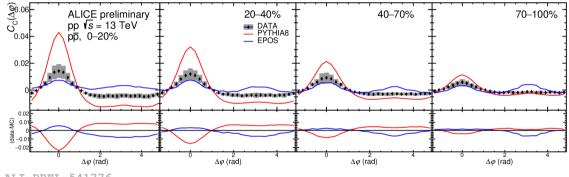


ALI-PREL-541764

5-9/06/2023, HADRON 2023

Daniela Ruggiano

Rescaled two-particle cumulant



ALI-PREL-541770

5-9/06/2023, HADRON 2023

Daniela Ruggiano

Rescaled two-particle cumulant

ALI-PREL-541776

5-9/06/2023, HADRON 2023

Daniela Ruggiano