

Techniques for hadron spectroscopy studies at LHCb

Mengzhen Wang (INFN di Milano)

2023/06/07

On behalf of the LHCb collaboration

Hadrons 2023

05-09 June 2023, Genova, Italy

b, c spectroscopy at LHCb

- LHCb: one of the major players of hadron spectroscopy study
 - Search for new hadrons
 - Measure hadron properties (lineshape, lifetime, decay modes...)

b, c spectroscopy at LHCb

• Benefit from...

Large *b*, *c* hadron production cross-section @ LHC

JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

LHCb **detector optimized** for the collection, reconstruction and identification of *b*, *c* signals

High-stat. and good-quality heavy flavor dataset

Improved knowledge about hadron spectroscopy Yield/(500 keV/ c^2) MeV) LHCb LHCb Data 60F $9 \, {\rm fb}^{-1}$ $9 \, \text{fb}^{-1}$ Total fit 40 (20 X(3960) 50F $X_0(4140)$ Yield/((4260)40F $\psi(4660)$ 3.874 3.876 Nonresonant $D_{e}^{+}D_{e}^{-}$ $T_{cc}^+ \rightarrow D^0 D^0 \pi^+$ GeV 30 20 background D^{*+}D⁰ threshold 20 10 10 4.0 4.2 4.4 4.6 4.8 $m(D_s^+ D_s^-)$ [GeV] 3.87 3.88 3.89 3.9 arXiv:2210.15153, Tetraguark candidate in $\left[\text{GeV}/c^2 \right]$ $m_{{ m D}^0{ m D}^0\pi^+}$ $D_{\rm s}^+ D_{\rm s}^-$ final state Hadrons 2023 Nature Communicatitions, 13, 3351 (2022)

Data analysis

Menu of today:

Development of data-analysis techniques benefiting recent LHCb results (Focus on amplitude analysis)

Observation of doubly-charm tetraquark candidate

Selected topics

Development of helicity amplitude formalism

Speed up amplitude fits using GPUs

arXiv:2301.04899 Evidence of tetraquark candidate $T^{\theta}_{\psi s1}(4000)^0 \checkmark$ A CUDA + RooFit based fit framework

Focus on techniques. For relevant physics results, see the talks by Elisabetta [link] and Bo [link]

Development of helicity-based amplitude formalisms

Helicity formalism & P_c observation

- $\sim 20k \Lambda_b^0 \rightarrow J/\psi p K^-$ signals collected in Run1
- Clear $J/\psi p$ structure seen in Dalitz plot
- Multi-dimension amplitude analysis to extract properties of $J/\psi p$ intermediate states

Helicity formalism & P_C observation

• Two decay chains: Λ^* or P_c as intermediate state

Wigner-D function to associate initial & final spin states of each two-body decay node

Use angles between particle momenta/momentum planes to obtain angular variables

Helicity formalism & P_c observation

- Combine two chains to get final matrix element
 - Need a consistent definition of initial & final spin state

PRL 115 (2015) 072001

Helicity formalism & P_c observation

- Two $J/\psi p$ resonances with significance $>5\sigma$
 - minimal quark content [$c\overline{c}uud$], good candidate for pentaquarks

- Follow-up analyses:
 - Confirmed in Model-independent analysis
 PRL 117(2016)082002
 - Similar structure seen in Cabibbo suppressed $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ PRL 117(2016)082003
 - $P_c(4312)$, $P_c(4440)$, $P_c(4457)$ observed in Run1+2 data PRL 122(2019)222001

Advances in High Energy Physics (2020) 6674595; Chinese Phys. C 45 (2021) 063103

The missing quantum effect ?

• The conventional helicity formalism

- Arbitrary "-1" terms in any single-chain amplitudes:
 - Generate tricky behavior in interference of different chains

2023/06/07

Advances in High Energy Physics (2020) 6674595; Chinese Phys. C 45 (2021) 063103

Impact on interference

• The Λ^* , P_c interference using the formula for P_c observation

Impact of missing of the quantum effects consistent with the statement in PRL 115 (2015) 072001

polarization of zero. Interferences between various Λ_n^* and P_{cj}^+ resonances vanish in the integrated rates unless the resonances belong to the same decay chain and have the same quantum numbers.

- Impact on the first P_c analysis:
 - No impact on Λ^* -only fit quality
 - Reduce the flexibility of $\Lambda^* + P_c$ model
 - P_c properties (to be) updated in Run1+2 analysis

PRL 122(2019)222001: Two-peak nature of $P_c(4450)$ observed;

Properties of $P_c(4380)$ to be updated in future amplitude analysis

Recover the missing quantum effect

- Main idea:
 - Origin of the issue is improper alignment of final-state definitions for each decay chain due to arbitrary "-1" term
 - Seek for new principles for final-state alignment

Conventional method

Rely on graphic picture Use angles between particle momenta or momentum planes to define alignment operator

Recover the missing quantum effect

- Main idea:
 - Origin of the issue is improper alignment of final-state definitions for each decay chain due to arbitrary "-1" term
 - Seek for new principles for final-state alignment

New method

Directly write down all rotation/boost operators associating initial/final spin-state frames, using a representation where $\theta \rightarrow \theta + 2\pi$ is visible

Advances in High Energy Physics (2020) 6674595

$$\widehat{R}\left(\alpha_{1}^{W,R},\beta_{1}^{W,R},\gamma_{1}^{W,R}\right)\widehat{R}(\phi_{R},\theta_{R},0)\widehat{R}\left(\phi_{1}^{R},\theta_{1}^{R},0\right)\left|\mathbf{p}_{1}^{R},s_{1},\lambda_{1}^{R}\right\rangle$$

$$=\sum_{\mu_{1}^{R}}D_{\mu_{1}^{R},\lambda_{1}^{R}}^{s_{1}}\left(\phi_{1}^{R},\theta_{1}^{R},0\right)\times\sum_{\nu_{1}^{R}}D_{\nu_{1}^{R},\mu_{1}^{R}}^{s_{1}}(\phi_{R},\theta_{R}0)\sum_{m_{1}}D_{m_{1},\nu_{1}^{R}}^{s_{1}}$$

$$\times \left(\alpha_{1}^{W,R},\beta_{1}^{W,R},\gamma_{1}^{W,R}\right)\left|\mathbf{p}_{1}^{A},s_{1},m_{1}\right\rangle.$$

Advances in High Energy Physics (2020) 6674595; Chinese Phys. C 45 (2021) 063103

$$R_z(\alpha) = \begin{pmatrix} e^{-i\alpha/2} & 0\\ 0 & e^{i\alpha/2} \end{pmatrix} R_y(\alpha) = \begin{pmatrix} \cos(\alpha/2) & -\sin(\alpha/2)\\ \sin(\alpha/2) & \cos(\alpha/2) \end{pmatrix}$$

Conventional method

Rely on graphic picture Use angles between particle momenta or momentum planes to define alignment operator

Recover the missing quantum effect

- Main idea:
 - Origin of the issue is improper alignment of final-state definitions for each decay chain due to arbitrary "-1" term
 - Seek for new principles for final-state alignment

New method

Directly write down all rotation/boost operators associating initial/final spin-state frames, using a representation where $\theta \rightarrow \theta + 2\pi$ is visible

Advances in High Energy Physics (2020) 6674595

$$\widehat{R}\left(\alpha_{1}^{W,R},\beta_{1}^{W,R},\gamma_{1}^{W,R}\right)\widehat{R}(\phi_{R},\theta_{R},0)\widehat{R}\left(\phi_{1}^{R},\theta_{1}^{R},0\right)\left|\mathbf{p}_{1}^{R},s_{1},\lambda_{1}^{R}\right\rangle$$

$$=\sum_{\mu_{1}^{R}}D_{\mu_{1}^{R},\lambda_{1}^{R}}^{s_{1}}\left(\phi_{1}^{R},\theta_{1}^{R},0\right)\times\sum_{\nu_{1}^{R}}D_{\nu_{1}^{R},\mu_{1}^{R}}^{s_{1}}(\phi_{R},\theta_{R}0)\sum_{m_{1}}D_{m_{1},\nu_{1}^{R}}^{s_{1}}$$

$$\times\left(\alpha_{1}^{W,R},\beta_{1}^{W,R},\gamma_{1}^{W,R}\right)\left|\mathbf{p}_{1}^{A},s_{1},m_{1}\right\rangle.$$

Advances in High Energy Physics (2020) 6674595; Chinese Phys. C 45 (2021) 063103

$$R_z(\alpha) = \begin{pmatrix} e^{-i\alpha/2} & 0\\ 0 & e^{i\alpha/2} \end{pmatrix} R_y(\alpha) = \begin{pmatrix} \cos(\alpha/2) & -\sin(\alpha/2)\\ \sin(\alpha/2) & \cos(\alpha/2) \end{pmatrix}$$

Conventional method

Rely on graphic picture Use angles between particle momenta or momentum planes to define alignment operator

New method implemented in

 $\Lambda_c^+ \rightarrow pK\pi^-$ amplitude analysis arXiv:2208.03262 $\Xi_b^- \rightarrow J/\psi\Lambda K^-$ amplitude analysis for pentaquark search Science Bulletin 66 (2021) 1278

$\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis

- 2016 data, $\mathcal{L} = 0.5 \text{fb}^{-1}$; ~400k signals;
- Helicity-based Am.An.; Measure polarization, resonance fractions and decay parameters
- Large interference seen between different chains

Large **interference** between $\Delta(1232)^{++}$ and $K^*(892)$

$\Xi_b^- \rightarrow J/\psi \Lambda K^-$ amplitude analysis

- Consider Λ as final-state particle, similar spin structure as $\Lambda_b^0 \to J/\psi p K^-$ decay
- Use same amplitude formalism, with alignment-issue fixed

 P_{cs} mass 19MeV below the $\Xi_c^0 \overline{D}^{*0}$ threshold. Statistic not enough for J^P determination. Science Bulletin 66 (2021) 1278

Phys. Rev. D 101 (2020) 034033

Dalitz-plot decomposition (DPD) formula

• $\mathcal{M} \sim \langle \text{init.} | \text{fin.} \rangle \sim \langle \text{init.} | \sum_{i} R_{i} \rangle \dots \langle \sum_{i} R_{i} | \text{fin.} \rangle$

space-fixed CM

Wigner-D functions

Choice of intermediate spin state/frame not unique. Alternative choice: DPD formula

- DPD formula for 3-body decay
 - $0 \rightarrow 123$

An arbitrary initial spin frame

- Same Euler rotation for all decay chains , (One Wigner-D function)
- All momenta (spin-axis of helicity states) aligned to x-z plane; $\hat{p}_1 = -\hat{z}$

Use conventional helicity formula to write the rest part of amplitude

$(\theta_{2}, \phi_{2}) \stackrel{\text{W}}{\text{P}_{1}} \stackrel{\text{P}_{1}}{\text{P}_{2}} \qquad (\theta_{2}, \phi_{2}) \stackrel{\text{W}}{\text{P}_{1}} \stackrel{\text{P}_{1}}{\text{P}_{3}} \qquad (\theta_{2}, \phi_{3}) \stackrel{\text{P}_{1}}{\text{P}_{3}} \stackrel{\text{P}_{2}}{\text{P}_{3}} \stackrel{\text{P}_{2}}{\text{P}_{3}} \stackrel{\text{P}_{2}}{\text{P}_{3}} \qquad (\theta_{2}, \phi_{3}) \stackrel{\text{P}_{1}}{\text{P}_{3}} \stackrel{\text{P}_{2}}{\text{P}_{3}} \stackrel{\text{P}_{3}}{\text{P}_{2}} \stackrel{\text{P}_{3}}{\text{P}_{3}} \qquad (\theta_{3}, \phi_{3}) \stackrel{\text{P}_{1}}{\text{P}_{2}} \stackrel{\text{P}_{2}}{\text{P}_{3}} \stackrel{\text{P}_{3}}{\text{P}_{3}} \stackrel{\text{P}_{3}}{\text{P}_{3}} \stackrel{\text{P}_{3}}{\text{P}_{3}} \qquad (\theta_{3}, \phi_{3}) \stackrel{\text{P}_{1}}{\text{P}_{2}} \stackrel{\text{P}_{3}}{\text{P}_{3}} \stackrel{\text{P}_{3}} \stackrel{\text{$

Phys. Rev. D 101 (2020) 034033

Angular variables can be derived using Dalitz-plot variables

See the talks by Elisabetta [link] and Bo [link]

arXiv:2210.10346

Observation of $P^{\Lambda}_{\psi s}(4338)$

- Search for $J/\psi p$ and $J/\psi \Lambda$ states in $B^+ \to J/\psi p \overline{\Lambda}$
 - B^+ is spin-zero. 1st Euler rotation is a constant term
 - 2D Dalitz amplitude for 3-body B^+ decay (DPD) arXiv:2210.10346; supplemental A
 - 2D amplitude of $J/\psi \rightarrow \mu^+\mu^-$ + 2D amplitude of $\Lambda \rightarrow p\pi$
- 6D amplitude analysis on $\sim 4500 \ B^+ \rightarrow J/\psi p \overline{\Lambda}$ decays
 - $P_{\psi s}^{\Lambda}$ significance > 10σ

Speed up amplitude fits using GPUs

Study of $B^0 \rightarrow J/\psi K^0_S \phi$ decay

- $T^{\theta}_{\psi s1}(4000)^+$ observed in $B^+ \rightarrow J/\psi K^+ \phi$ channel
- Search for its isospin partner in $B^0 \rightarrow J/\psi K_S^0 \phi$ decay
 - Joint amplitude fit using $B^+ \rightarrow J/\psi K^+ \phi$ and $B^0 \rightarrow J/\psi K^0_S \phi$ events collected in LHCb Run1+Run2

Construction of likelihood function

• To obtain a log-likelihood value:

 $\ln \mathcal{L} = \sum_{i} \frac{\text{Loop over all data events in signal region (~20k)}}{\ln(1 - \beta)P_{i, \text{ sig}}(\vec{\omega}) + \beta P_{i, \text{ bkg}})}$ Parameterized using sideband data

Signal PDF:
$$P_{i,\text{sig}} = \frac{|\mathcal{M}_i(\vec{\omega})|^2 \times \Phi_i \times \epsilon_i}{I_{\text{norm}}(\vec{\omega})}$$

Loop over uniform phase-space MC events passing all event selections (400k)

Norm. factor obtained numerically using MC: $I_{\rm norm} = \sum_j \left| \mathcal{M}_j(\vec{\omega}) \right|^2$

- Need to calculate matrix element for $\sim 0.4M$ times
- Amplitude computations for each data/MC events are independent on each other. Use GPUs to handle the them in parallel

CUDA + RooFit based framework

- Idea: Let GPU to calculate $|\mathcal{M}_i|^2$ for events of both data and MC
 - CUDA (GPU based C++) for computation of $|\mathcal{M}_i|^2$
 - CUDA memory transfers between CPU and GPU

GPU type: RTA 3090

Optimization of the framework

- Optimization of the GPU sector
 - Tools: <u>Nsight Systems</u> (nsys) and <u>Nsight Compute</u> (ncu) by Nivdia

Methods	Impact on GPU time calculating one log-likelihood value
Malloc once and reuse the memory	8.8ms -> 7.7ms
Double -> Float	7.7ms -> 3.7ms
Use less registers	3.7ms -> 3.4ms
Reduce branch structure	3.4ms -> 2.6ms

- Re-organize the task of GPU and CPU
 - CPU part start to dominate the time consumption

See the talk by Elisabetta [link]

arXiv:2301.04899

Performance & achievement

- $\sim 10 mins$ to run an amplitude fit
 - Even fast enough for toy studies with hundreds of fits needed
- Physics result

- Evidence of $T_{\psi s1}^{\theta}(4000)^0$ seen in $J/\psi K_S^0$ system (~4 σ)
- Mass, width consistent with $T^{\theta}_{\psi s1}(4000)^+$ isospin partner

Summary

Summary

 LHCb has made a great contribution to hadron spectroscopy studies, and is smoothly boosting the field to a new level

Stay tuned 🙂 Thank you for your attention !

To persist the **ability of handling the ever larger** data flow:

Improved trigger system, <u>Real-Time Analysis</u> Advanced software tools for **Data Processing** and Analysis

Example in this talk: Use GPUs to speed up amplitude analysis

Develop & use **new phenomenological models** in data analysis, minimize relevant systematic uncertainties, to match the ever better stat. precision

Example in this talk: Development of the general formalism for helicity amplitudes 26

2023/06/07

Phys. Rev. D 101 (2020) 034033

Dalitz-plot decomposition (DPD) formula

- Split the amplitude into different sectors featuring different aspects of the decays
 - Example: $\Lambda_b^0 \rightarrow J/\psi p K^-$ amplitude

 $(M_{\lambda,\xi}^{\Lambda})_{\text{LHCb}} = \sum_{\nu,\mu} D_{\lambda,\nu}^{J*}(\phi_1,\theta_1,\phi_{23}) \text{ Shared by } P_c, \Lambda^* \text{ chains } Dalitz-variable-dependent amplitude }$ $(M_{\lambda,\xi}^{\Lambda})_{\text{LHCb}} = \sum_{\nu,\mu} D_{\lambda,\nu}^{J*}(\phi_1,\theta_1,\phi_{23}) \text{ Shared by } P_c, \Lambda^* \text{ chains } Dalitz-variable-dependent amplitude }$ $(M_{\lambda,\xi}^{\Lambda})_{\text{LHCb}} = \sum_{\nu,\mu} D_{\lambda,\nu}^{J*}(\phi_1,\theta_1,\phi_{23}) \text{ Shared by } P_c, \Lambda^* \text{ chains } Dalitz-variable-dependent amplitude }$ $(M_{\lambda,\xi}^{\Lambda})_{\text{LHCb}} = \sum_{\nu,\mu} D_{\lambda,\nu}^{J*}(\phi_1,\theta_1,\phi_{23}) \text{ H}_{\tau,\mu}^{0}(23),1} X_s(\sigma_1) d_{\tau,\lambda}^*(\theta_{23}) H_{\lambda,0}^{(23)\to2,3} \Lambda^* \text{ chain }$ $+ \sum_{s} \sum_{\tau,\mu',\lambda'} \sqrt{2}n_s d_{\nu,\tau}^{1/2}(\hat{\theta}_{3(1)}) H_{\tau,0}^{0\to(12),3} X_s(\sigma_3) d_{\tau,\mu'-\lambda'}^s(\theta_{12}) H_{\mu',\lambda'}^{(12)\to1,2} d_{\lambda'\lambda}^{1/2}(\zeta_{3(1)}^2) d_{\mu'\mu}^1(\zeta_{3(1)}^1) \Big) P_c \text{ chain }$

 $\times \sqrt{3} e^{i\mu(\phi_{23}+\phi_{+}'')} d^1_{\mu\xi}(\theta_+) H^{1\to\mu^+,\mu^-}_{\lambda_+,\lambda_-}, J/\psi \to \mu^+\mu^-$ decay amplitude shared by two chains

• A good agreement found with the conventional formalism

Chinese Phys. C 45 (2021) 063103 DPD V.S. conventional helicity formula 2.5 2

$\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis

• 2016 data, $\mathcal{L} = 0.5 \text{ fb}^{-1}$; ~400k signals; helicity-based Am.An.

-			
Resonance	J^P	$Mass \ (MeV)$	Width (MeV)
$\Lambda(1405)$	$1/2^{-}$	1405.1	50.5
$\Lambda(1520)$	$3/2^{-}$	1515 - 1523	10 - 20
$\Lambda(1600)$	$1/2^{+}$	1630	250
$\Lambda(1670)$	$1/2^{-}$	1670	30
$\Lambda(1690)$	$3/2^{-}$	1690	70
A(2000)	$1/2^{-}$	1900 - 2100	20 - 400
$\Delta(1232)^{++}$	$3/2^{+}$	1232	117
$\Delta(1600)^{++}$	$3/2^{+}$	1640	300
$\Delta(1700)^{++}$	$3/2^{-}$	1690	380
$K_0^*(700)$	0^{+}	824	478
$K^{*}(892)$	1^{-}	895.5	47.3
$K_0^*(1430)$	0^+	1375	190
			70 2

- All parameters of amplitude model reported
- Mass and width of $\Lambda(2000)$ determined

 $m = 1988 \pm 2 \pm 21 \,\text{MeV}$ $\Gamma = 179 \pm 4 \pm 16 \,\text{MeV}$ $- K_0^*(700)$

- A(1670)

 $-\Delta(1700)^{+}$

· A(1405)

A(1690)

- K^{*}(892)

- A(1520)

- A(2000)

 $--K_{0}^{*}(1430)$

- A(1600)

Background

Λ_c^+ polarization measurement

$$p(\Omega, \mathbf{P}) = \frac{1}{\mathcal{N}} \sum_{m_p = \pm 1/2} \left\{ (1 + P_z) |\mathcal{A}_{1/2, m_p}(\Omega)|^2 + (1 - P_z) |\mathcal{A}_{-1/2, m_p}(\Omega)|^2 \right.$$
 Initial spin structure
$$+ 2 \operatorname{Re} \left[(P_x - iP_y) \mathcal{A}_{1/2, m_p}^*(\Omega) \mathcal{A}_{-1/2, m_p}(\Omega) \right] \right\}, \text{ of } \mathcal{A}_c^+$$

Large interference seen between different chains

 Λ_c^+ polarization from semileptonic *b*-decays measured, with 2 different definitions of initial spin axis

Model dependency contributes to the largest syst. uncertainty (second term)

Advances in High Energy Physics (2020) 7463073

```
Large interference between \Delta(1232)^{++} and K^*(892)
```

Component	Value $(\%)$
$\begin{array}{c} P_x \ (lab) \\ P_y \ (lab) \\ P_y \ (lab) \end{array}$	$\begin{array}{c} 60.32 \pm 0.68 \pm 0.98 \pm 0.21 \\ -0.41 \pm 0.61 \pm 0.16 \pm 0.07 \\ \end{array}$
$\frac{P_z \ (lab)}{P_x \ (\tilde{B})}$	$-24.7 \pm 0.6 \pm 0.3 \pm 1.1$ $21.65 \pm 0.68 \pm 0.36 \pm 0.15$
$\begin{array}{c} P_y \ (\tilde{B}) \\ P_z \ (\tilde{B}) \end{array}$	$\begin{array}{c} 1.08 \pm 0.61 \pm 0.09 \pm 0.08 \\ -66.5 \pm 0.6 \pm 1.1 \pm 0.1 \end{array}$

Final-state