Calculations of Nucleon EDMs on a Lattice with Background Field

Sergey N. Syritsyn, with Stony Brook University & RIKEN / BNL Research Center with M. Abramczyk, T. Blum, F. He, T. Izubuchi, H. Ohki, (RBC collaboration)

HADRON 2023

Nucleon Electric Dipole Moments

$$\vec{d}_N = d_N \frac{\vec{S}}{S}$$

 $\mathcal{H} = -\vec{d}_N \cdot \vec{E}$

EDMs are the most sensitive probes of CPv:

- Signals for beyond SM physics $(SM = 10^{-5} \text{ of the current exp.bound})$
- Prerequisite for Baryogenesis
- Strong CP problem : θ_{QCD} -induced EDM?

A.Sakharov's conditions for baryon asymmetry in the Universe [JETP letters, 1967]

- P, CP symmetry violation
- Baryon number violation
- on non-equilibrium transition

Experimental Outlook

Current nEDM limits:

• $|d_n| < 2.9 \times 10^{-26} e \cdot \text{cm}$ (stored UC neutrons) [Baker et al, PRL97: 131801(2006)] • $|d_n| < 1.6 \times 10^{-26} e \cdot \text{cm}$ (¹⁹⁹Hg) [Graner et al, PRL116:161601(2016)]

Future nEDM sensitivity :

- 1–2 years : next best limit?
- 3–4 years : x10 improvement
- 7-10 years : x100 improvement

	10 ⁻²⁸ e cm
CURRENT LIMIT	<300
Spallation Source @ORNL	< 5
Ultracold Neutrons @LANL	~30
PSI EDM	<50 (I), <5 (II)
ILL PNPI	<10
Munich FRMII	< 5
RCMP TRIUMF	<50 (I), <5 (II)
JPARC	< 5
Standard Model (CKM)	< 0.001

[Snowmass EDM workshop report, arXiv:2203.08103]

Nucleon EDMs: a Window into New Physics

■ Effective quark-gluon CPv interactions: dimension ⇔ scale of BSM physics [Engel, Ramsey-Musolf, van Kolck, Prog.Part.Nucl.Phys. 71:21 (2013)]

$$\mathcal{L}_{eff} = \sum_{i} \frac{c_i}{[\Lambda_{(i)}]^{d_i - 4}} \mathcal{O}_i^{[d_i]}$$

 $d=4: \theta_{QCD}$

- d=5(6): quark EDM, chromo-EDM
 - d=6: 4-fermion CPv, 3-gluon (Weinberg)

$$c_i \iff d_{n,p}$$
 ?

- $d_{n,p} = d_{n,p}^{\theta} \theta_{\text{QCD}} + d_{n,p}^{cEDM} c_{cEDM} + \dots$
 - Nonperturbative QCD on a Lattice:

Quark-gluon CPv interactions \implies nucleon EDMs , CPv π NN couplings

Determination of Nucleon EDM on a Lattice

• Energy-Shift method (uniform electric field) [S.Aoki et al '89 ; E.Shintani et al '06; E.Shintani et al, PRD75, 034507(2007)] $\langle N(t)\bar{N}(0) \rangle_{\theta,\vec{E}} \sim e^{-(E \pm \vec{d}_N \cdot \vec{E})t}$ Euclidean lattice:

Euclidean lattice: **Real**-valued $\mathbf{E} \implies$ violate time-BC **Imag**-valued $\mathbf{E} \implies$ imaginary shift in m_N

 Electric dipole Form-Factor method (EDFF): [(everybody else, almost)]

$$\langle N_{p'} | \bar{q} \gamma^{\mu} q | N_p \rangle_{\mathcal{CP}} = \bar{u}_{p'} \left[F_1 \gamma^{\mu} + (F_2 + i F_3 \gamma_5) \frac{i \sigma^{\mu\nu} (p' - p)_{\nu}}{2m_N} \right] u_p$$

- pre-2017 : spurious $\mu_n \leftrightarrow d_n$ mixing
- Dragos et al(2019)
- Alexandrou et al(2020)
- Bhattacharya et al (2021)
- Liang et al (2023)

 $d_n / \theta = -0.0015(7) \ e \cdot \mathrm{fm}$

 $d_n / \theta = 0.0009(24) e \cdot \mathrm{fm}$

- $|d_n/\theta| \lesssim 0.01 \ e \cdot \mathrm{fm}$
- $d_n / \theta = -0.0015(1)(3) e \cdot \text{fm}$

$$d_N = F_3(Q^2 \rightarrow 0) / (2m_N)$$

forward-limit $F_3(Q^2 \rightarrow 0)$

EDFF: Nucleon "Parity Mixing"

CPv interaction induces a chiral phase in nucleon wave functions on a lattice

[M.Abramczyk, S.Aoki, S.N.S, et al (2017) arXiv:1701.07792] EDM and MDM are defined with positive-parity spinors

$$\langle N_{p'} | \bar{q} \gamma^{\mu} q | N_p \rangle_{\mathcal{CP}} = \bar{u}_{p'} \left[F_1 \gamma^{\mu} + (F_2 + i F_3 \gamma_5) \frac{i \sigma^{\mu\nu} (p' - p)_{\nu}}{2m_N} \right] u_p \quad \text{, with} \quad \frac{\gamma_4 u = +u}{\bar{u} \gamma_4 = +\bar{u}}$$

	θ-nEDM			$m_{\pi} [{\rm MeV}]$	$m_N [{\rm GeV}]$	F_2	α	$ ilde{F}_3$	$\overline{F_3}$
[ETMC 2016]		n	373	1.216(4)	$-1.50(16)^{a}$	-0.217(18)	-0.555(74)	0.094(74)
Chintoni et al 20051		n	530	1.334(8)	-0.560(40)	$-0.247(17)^{b}$	-0.325(68)	-0.048(68)	
			p	530	1.334(8)	0.399(37)	$-0.247(17)^{b}$	0.284(81)	0.087(81)
[Berruto et al 200		n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)	
		n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)	
[Guo	o et al 2015] {	n	465	1.246(7)	$ -1.491(22)^{c} $	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$	
		1	n	360	1.138(13)	$ -1.473(37)^{c}$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$

After removing the spurious contribution,

- no lattice signal for θ_{QCD} -induced nEDM
- RESOLVED conflict with pheno. values, lack of $d_N \sim m_q$ scaling

EDFF: Parity Mixing Correction

Exact value of α_5 *is critical for correct determination of EDM:*

$$F_3^{\text{lat}}(Q^2) \approx \frac{m}{q_3} \underbrace{\langle N_{\uparrow}(0) | \bar{q}\gamma_4 q | N_{\uparrow}(-q_3) \rangle_{\text{CP}}}_{\text{Q}} - \underbrace{\alpha_5 G_E(Q^2)}_{\text{Q}}$$

CPv matrix element

Sachs form factor subtraction

• Proton ($G_{Ep}(0)=1$) : Correction ~ α_5

• Neutron ($G_{En}(0)=0$) : No correction at Q²=0 However, Q² \rightarrow 0 extrapolation may be skewed by neutron electric form factor $\sim \alpha_5 G_{En}(Q^2)$

Controlling Noise from θ -Term

Variance of lattice θ -induced nEDM signal ~ (Volume)_{4d} :

$$\begin{split} d_N &\sim \left\langle Q \cdot \left(N J_\mu \bar{N} \right) \right\rangle \\ \text{Top. charge} \quad Q &\sim \int_{V_4} (G \tilde{G}) \sim \text{integer} \\ \text{Fluctuation} \quad \left\langle |Q|^2 \right\rangle &\sim V_4 \end{split}$$

- \implies Need to constrain Q integral to the volume around N, \overline{N} , J_{μ}
- in time around current, $|t_Q t_J| < \Delta t$ [E.Shintani et al (2015); Yoon et al (2019)]
- in time around source, $|t_Q t_{source}| < \Delta t$ [Dragos et al (2019)]

• 4-d sphere around sink or current,
$$|x_Q - x_{sink}| < R [K.-F. Liu et al (2023)]:$$

 $d_n^{\theta}/\theta = -0.0015(1)(3) \ e \cdot \text{fm}$ (chiral extrapolation)

EDFF: Effect of GG **cuts**

- $24^3x64 a = 0.114 \text{ fm } m\pi = 330 \text{ MeV} (N_f = 2 + 1 \text{ chiral-symmetric quarks})$
- 1400 confiigs \implies 89.6k stat.
- GG
 GG
 : Wilson-flowed (t=8a²) gauge field [M.Luscher, 1006.4518]
 5-loop improved GG
 [P. de Forcrand et al '97]
- Cuts in space $r \leq r_Q$, time Δt_Q

$$F_3^{\text{lat}}(Q^2) \approx \frac{m}{q_3} \underbrace{\langle N_{\uparrow}(0) | \bar{q}\gamma_4 q | N_{\uparrow}(-q_3) \rangle_{\mathcal{GP}}}_{\mathcal{GP}} - \underbrace{\alpha_5 G_E(Q^2)}_{\mathcal{GP}}$$

EDM from Energy Shift / Feynman-Hellman Thm

FH theorem :

Energy shift \iff Perturbation's matrix element

$$\begin{aligned} \frac{\partial E_{\lambda}}{\partial \lambda} &= \left\langle \phi_{\lambda} \left| \frac{\partial \hat{H}_{\lambda}}{\partial \lambda} \right| \phi_{\lambda} \right\rangle \qquad \text{with} \qquad (-\delta H) = \frac{\theta g^2}{32\pi^2} \int d^3 x \left(G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu} \right) \\ m'_N &= m_N - \left(d^\theta_N \theta \right) \vec{\Sigma} \cdot \vec{\mathcal{E}} \qquad \qquad \text{sample GG on only one time slice} \\ &\implies \text{noise reduction} \end{aligned}$$

EDM ⇔ Density of Top.charge in doubly (spin & electric) polarized nucleon

$$d_N^{\theta} \propto \left\langle N_{\uparrow} \right| \int d^3 x \, G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu} \left| N_{\uparrow} \right\rangle_{\mathcal{E}_z}$$

Nonzero in **CP-even** vacuum only if both *spin*- and *charge*-polarized

(permanent) EDM \iff

- in CP-broken vacuum : correlation of spin and charge
 OR
- in CP-even vacuum : "topological" polarization of glue in S & d polarized nucleon

 $\langle N | \mathbf{d} | N \rangle_{CPv} \sim \mathbf{S}, \\ \langle N | \mathbf{\Sigma} | N \rangle_{CPv} \sim \mathbf{E}$

 $\langle N \mid G \tilde{G} \mid N \rangle_{CP\text{-even}} \thicksim S \cdot E$

Background Electric Field on a Lattice

[W.Detmold et al (2009)] :

Magnetic & electric moments at Q²=0 ; hadron polarizabilities

Electric field: Real in Euclidean ≡ Imaginary in Minkowski space

Unambiguous determination of EDM from the energy shift: Most straightforward for neutron ($Q_{el}=0$); possible for proton

Topological Charge with Gradient Flow

Gradient flow: covariant *4D-diffusion* of quantum fields with "G.F." time t_{GF} :

Tree-level:

Gradient-flowed topological charge:

total top. charge on 20 randomly

$$\begin{bmatrix} \text{M.Luscher, JHEP08:071; 1006.4518]} \\ \frac{d}{dt_{\text{GF}}} B_{\mu}(t_{\text{GF}}) = D_{\mu}G_{\mu\nu}(t_{\text{GF}}), \quad B_{\mu}(0) = A_{\mu} \\ B_{\mu}(x, t_{\text{GF}}) \propto \int d^{4}y \exp\left[-\frac{(x-y)^{2}}{4t_{\text{GF}}}\right] A_{\mu}(y) \\ \tilde{Q}(t_{\text{GF}}) = \int d^{4}x \frac{g^{2}}{32\pi^{2}} \left[G_{\mu\nu}\tilde{G}_{\mu\nu}\right]\Big|_{t_{\text{GF}}} \end{aligned}$$

- effective scale $\Lambda_{\rm UV} \rightarrow (t_{\rm GF})^{-1/2}$
- smooth fields (reduce $|G_{\mu\nu}|$) \iff continuous "cooling"
- remove Gµv dislocations
 ⇒dynamical separation of top. sectors
 [M.Luscher, JHEP08:071; 1006.4518]
- diffusion of top.charge density

Topological Charge Density

$$q(x) = \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu}$$
$$\approx \frac{1}{16\pi^2} \frac{1}{a^4} \operatorname{Tr} \left[G^{\text{lat}}_{\mu\nu} \widetilde{G}^{\text{lat}}_{\mu\nu} \right]$$
$$\propto (\mathbf{E} \cdot \mathbf{H})_{\text{color}}$$

Gradient flow:

- effective scale $(\Lambda_{\rm UV})^{-1} \rightarrow (t_{\rm GF})^{1/2}$
- make fields smooth (reduce $|G_{\mu\nu}|$)
- or remove dislocations⇒dynamical

separation of topological sectors [M.Luscher, JHEP08:071; 1006.4518]

• 4D-diffusion (including time) of q(x) $\langle q(x)q(0) \rangle \sim exp[-(x-y)^2/8t_{\text{GF}}]$

 $24^3 \times 64$ lattice, $m\pi \approx 340 \ MeV$

Sergey Syritsyn

Top.Charge–Nucleon Correlation Functions

Two effects observed: 1. Convergence to ground state matrix el. 2. Diffusion of top.charge for $t_{sep} \leq 7a$

PRELIMINARY estimates $2md_n = F_3(0) \approx 0.11 \dots 0.13$ **agree with form factor**

Analysis of (τ_Q, t_{GF}) required to detangle $\langle N | G \widetilde{G} | N \rangle$, $\langle N | G \widetilde{G} | N \rangle_{exc}$, $\langle vac | G \widetilde{G} | N \overline{N} \rangle$,

. . .

Top.Charge–Nucleon C.F. (Low-mode Improved)

Two effects observed: 1. Convergence to ground state matrix el. 2. Diffusion of top.charge for $t_{sep} \leq 7a$

PRELIMINARY estimates $2md_n = F_3(0) \approx 0.11 \dots 0.13$ **agree with form factor**

Analysis of (τ_Q, t_{GF}) required to detangle $\langle N | G \widetilde{G} | N \rangle$, $\langle N | G \widetilde{G} | N \rangle_{exc}$, $\langle vac | G \widetilde{G} | N \overline{N} \rangle$,

. . .

"Diffusion" of Top.Charge under Gradient Flow

Empirically for $r, \sqrt{t_{\rm GF}} \gg m_{\eta'}^{-1}$ $\langle \tilde{q}(r) \tilde{q}(0) \rangle \propto \exp\left[-\frac{r^2}{4r_Q^2(t_{\rm GF})}\right]$

Diffusion of q(x) in Euclidean (lattice) time:

$$q(t_{GF};t) = \sum_{t'} K(t_{GF};t-t')q(t')$$

complications for matrix element analysis

"Diffusion" of Top.Charge under Gradient Flow

complications for matrix element analysis

where $\chi(t_{GF}; t_2 - t_1) = \langle q(t_{GF}; t_2) q(t_{GF}; t_1) \rangle$

Combined Fit: Euclidean Time & Gradient Flow

Combined Analysis of $(\tau_{\rm Q}, t_{\rm GF})$ dependence:

- oround state $\langle N|GG|N\rangle$
- excited state(s) $\langle N|GG|N\rangle_{\rm exc}$
- "contact" amplitudes $\langle N(GG)|N\rangle$
- NN annihilation by GG $\langle vac | GG | NN \rangle$

orey band: "summation analysis"

Fit

Extrapolation to the Physical Point

Summary

Novel method to compute nEDM from local topological charge Results consistent with earlier works (and also with zero) Potential method of choice for physical-point calculations with large V₄

Important cross-check for E.D. form-factor calculations Controllable space cut-off of "disconnected" CPv interaction

Current results within 2σ of zero; more statistics, additional pion-mass point needed Potential method of choice for physical-point calculations with large V₄

Outlook: nEDM from other CPv Operators

- EDM of the Proton : background field requires only energy shift (acc. cancels out)
- Background field method may reduce errors in calculations of nEDM from other "disconnected" CPv interactions: Weinberg, isoscalar (strange quark cEDM?)
- Simplified contractions for 4-quark CPv operators (L-R, SUSY)

$$\mathcal{O}_{\varphi ud}^{(1)} = \frac{1}{3} (\bar{u}u) (\bar{d}\gamma_5 d) + (\bar{u}T^A u) (\bar{d}\gamma_5 T^A d) - [u \leftrightarrow d]$$

$$\mathcal{O}_{quqd}^{(1)} = (\bar{u}\gamma_5 u) (\bar{d}d) + (\bar{u}u) (\bar{d}\gamma_5 d)$$

$$- [(\bar{u}u) (\bar{d}d) \leftrightarrow (\bar{u}d) (\bar{d}u)]$$

$$\mathcal{O}_{quqd}^{(8)} = (\bar{u}\gamma_5 T^A u) (\bar{d}T^A d) + (\bar{u}T^A u) (\bar{d}\gamma_5 T^A d)$$

$$- [(\bar{u}u) (\bar{d}d) \leftrightarrow (\bar{u}d) (\bar{d}u)]$$

$$u = \frac{1}{4}$$

$$u = \frac{1}{4}$$

$$u = \frac{1}{4}$$

$$u = \frac{1}{4}$$

vector

current