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• SM symmetries 

• Conservation of total lepton number L,  B - L 

• Crucial for theories explaining the dominance of matter over antimatter in the Universe 

• Neutrino properties 

• Stable neutral elementary fermion, 3 families, only EW interactions, flavour eigenstates 
≠ mass eigenstates  (PMNS matrix) 

• Unknown nature: Dirac or Majorana 

• Unknown absolute mass

The questions
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These neutrino properties are not accessible by oscillation experiments:  

• Dirac vs Majorana nature   

➡  double-beta decay  

• Absolute neutrino mass scale  

➡  end-point of β-decay spectrum 

➡  cosmological data 

➡  double-beta decay

Neutrino nature and mass scale
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THE DISCOVERY THAT NEUTRINOS HAVE MASS 
CALLS FOR AN EXPLANATION OF SUCH MASS 
AND HAS INCREASED THE INTEREST IN THE 

NEUTRINOLESS DOUBLE BETA DECAY
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Double beta decay

Cheryl Patrick, UCL Neutrino mass measurements & double beta decay �3
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: the smoking gun for Majorana

Matter CREATED!

Wendell Furry

(A,Z) → (A,Z+2) + 2e- + 2𝛎 

2nd order weak process allowed by the SM  

Observed in several nuclei with half-life ≳ 1018 yr 

(A,Z) → (A,Z+2) + 2e- 

Forbidden by the SM,                           
violates L and B-L 

Simplest model: exchange of a light 
Majorana neutrino      

m𝛎≠0 and Ψ≡ΨC (unique among fermions)   

Half-life ≳ 1025-26 yr 

ΔL = 2       
  Δ(B-L) = -2 

  2

(A , Z )→ (A , Z+2 )+2 e
-+2 ν̄

(A , Z )→ (A , Z+2 )+2 e
-

● 2νbb decay - observed, rare decay, 
● allowed by the Standard Model

● measured T
1/2

 > 1018 y

● 0νbb decay – DL=2 process, 
● forbidden in Standard Model

2ν2b - 0ν2b  

ΔL = 0       
  Δ(B-L) = 0 
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0𝛎ββ

Cheryl Patrick, UCL Neutrino mass measurements & double beta decay �3
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: the smoking gun for Majorana

Matter CREATED!

Wendell Furry

Experimental signature: 2 e- with summed kinetic energy at Qββ 

Spectrum of e- summed kinetic energy = monochromatic line at Qββ (~2-4 MeV)

Not to scale !!
Isotopic Abundance [atomic %]
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• The measurable quantity is the half-life: 

The half-life

Phase space factor: known 
with good accuracy from 
atomic physics. Contains 
the information on the  
kinematics in the final 
state.

Nuclear matrix element 
(nuclear physics) 

is affected by a large 
uncertainty

(T 0⌫
1/2)

�1 = G0⌫ |M0⌫
⌘ |2⌘2

Decay mechanism 
(particle physics) is 

unknown • Assuming the simplest scenario of the 
exchange of a light Majorana neutrino

m�� = |
�

i

mi · U2
ie|
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From T1/2 to mββ 
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The uncertainty associated with the 
nuclear matrix element is commonly 
addressed by comparing NMEs calculated 
with different theoretical approaches 

ABOUT A FACTOR 3 SPREAD: 
DIFFERENT APPROXIMATIONS IN THE 

SOLUTION OF THE MANY BODY PROBLEM 
ASSOCIATED WITH THE HEAVY 𝛃𝛃  

EMITTING NUCLEUS
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From Rev. Mod. Phys. 95, 025002 (2023)



• Probed half-lives so far are of the order of 1025-1026 y, many orders of magnitude longer than 
the age of the Universe;  

• Experiments have to monitor thousands of moles of atoms for years and be able to detect the 
decay in a single one of them.

Experimental Sensitivity

8

Isotopic abundance

Detector mass

Measuring time

BackgroundEnergy resolution

Half-life corresponding to the minimum 
number of detectable signal events 

above background at a given C.L.
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• Isotopic abundance ➝ enrichment 

• Exposure (M·T) ➝ tons of isotope   

• Energy resolution:  

• high (‰ of Qββ)  

• low (% of Qββ) 

Experimental Sensitivity
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IMPORTANT TO GET RID OF THE 
IRREDUCIBLE BKG FROM 2𝛎𝛃𝛃  

DECAY AND IDENTIFY AND 
DISENTANGLE THE VARIOUS 

CONTRIBUTION TO THE 
BACKGROUND

Background 

‣ external background: 
neutrons, gammas and cosmic 
ray fluxes from the 
environment 

‣ internal background: trace 
amounts of radioactivity in the 
detectors and the materials 
constituting the experimental 
apparatus 

‣ 2-neutrino double beta decay 
of the same isotope 

‣ events leaking from the 2𝛎 
continuum spectrum  

‣ pile-up

Isotopic Abundance [atomic %]
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Reduction strategies: 

• Underground experiments 
• Ultra-pure materials (screening, purification, clean assembly)  

Discrimination strategies:  

• High energy resolution 
• Active veto 
• Tracking, particle ID 
• Fiducial volume  
• Granularity, anti-coincidence 
• Pulse shape discrimination (PSD) 
• Ion Identification 

The background
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SIGNAL: 0.1 - 1 COUNT/TON/Y

BACKGROUND: 0.01 - 0.1 COUNT/TON/Y

The most crucial among the parameters determining the sensitivity of an experiment 

Credits: Nature



• Cosmology 

• Sensitive to Σm𝛎 

• The most sensitive probe but model dependent 

• Model independent direct measurement 

• β and Electron Capture decay: measure 

• 0𝛎ββ decay 

•  If Majorana particles, in simplest model sensitive to

Neutrino mass probes

m2
� =

�

i

|Uei|2m2
i

m�� = |
�

i

mi · U2
ie|

DUE TO THE RESULTS OF NEUTRINO OSCILLATION 
EXPERIMENTS, THE PARAMETER SPACE OF THESE 

MASS PROBES IS CONSTRAINED
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Present knowledge from oscillations
• Three-neutrino fit based on data available in November 2022 

• nuFIT 5.2 (2022)  - JHEP 09 (2020) 178
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PRESENTLY, GLOBAL FITS INDICATE 
A PREFERENCE FOR THE NORMAL 

HIERARCHY AT ABOUT 3 SIGMA



mββ parameter space

allowed parameter space for mββ as a function of mlight, mβ, and Σ, assuming the central value 
of the neutrino oscillation parameters
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From Rev. Mod. Phys. 95, 025002 (2023)



SOURCE ≠  DETECTOR

Inner Balloon
(3.08 m diameter)

Photomultiplier Tube

Outer Balloon
(13 m diameter)

Buffer Oil

Chimney
Corrugated Tube

Suspending Film Strap

Film Pipe

Xe-LS 13 ton
(300 kg    Xe)

Outer LS
1 kton

136

ThO W Calibration Point2

SOURCE = DETECTOR

High efficiency  

Large mass

Limited mass 
and efficiency  

Topology

Large mass (easier 
to scale wrt solid) 

Limited energy 
resolution 

LOADED LIQUID SCINTILLATORS

CRYOGENIC BOLOMETERS

High energy resolution 
and efficiency 

Limited mass wrt liquid

HPGE DETECTORS
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The worldwide experimental effort
LIQUID AND GAS TPC
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Experimental technique: Bare HPGe detectors, ~90% enriched in 
76Ge in LAr instrumented as active veto 

Bringing together the the technological expertise and experience 
from the GERDA experiment (lowest background) and MAJORANA 
DEMONSTRATOR (best energy resolution).

LEGEND-200

Bkgd ~2·10-4 cpy/kg/keV 

dominated by 42K β-decays &            
α-surface emitters 

 T0ν1/2 ~ 1027 yr   mββ: [35-75] meV

@ LNGS
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Upgraded GERDA infrastructure + 200 kg HPGe detector:                                                                                             

lower background                                                                                                                                                                      

higher energy resolution 

Stable data taking with 140 kg since March 2023



LEGEND 1000

230 decay R. Brugnera                 NOW 2022, 10 September 2022

Cryostat and Water TankCryostat and Water Tank

 Baseline cryostat allows deployment 
of 4 separate Ge payloads, each 250 
kg of detectors (max. 420 kg)

 Allows staging: physics data taking 
with 1st payload

 4 re-entrant tubes (1 m diam, 3.3 m3) 
contain underground Ar

LEGEND-1000 @ SNOLAB 

lock 

system 

work deck & 
glove box

isolation valves 

re-entrant tubes
(UGLAr) 

7m cryostat

12m water tank

15m cavity

@SNOLAB/LNGS
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Experimental technique: Bare HPGe detectors, ~90% enriched in 
76Ge in LAr instrumented as active veto 

Bringing together the the technological expertise and experience 
from the GERDA experiment and MAJORANA DEMONSTRATOR.

New infrastructure: 

Baseline underground site SNOLAB             
LNGS alternative, depth influences 77(m)Ge background 
14 vertical string  
Electroformed copper for physical support 
Immersed in UGLAr  
Wavelength-shifting fiber curtain to read the scintillation light

Bkgd ~2·10-5 cpy/kg/keV 

T0ν1/2 ~ 1.3·1028 yr   mββ: [9-21] meV

From: arXiv:2107.11462



Since 2019:  data taking with high duty cycle and stable performances 

• Collected exposure exceeded  ~2 Ton yr 

• ΔEFWHM @Qββ~7 keV (σE/E~0.1%) 

• bkgd: ~10-2 cpy/kg/keV 

CUORE
Larger bolometric detector ever built 

‣ 988 natTeO2 crystals 

‣ 742 kg of TeO2,  206 kg 130Te. 

@LNGS

Nature 604 (2022) 7904, 53-58 
Exposure ~1 Ton yr (~300 kg yr 130Te)   

T0ν1/2 > 2.2·1025 yr @90% C.I.   
90 - 305 meV @90% C.I.
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Experimental technique: Ultracold 
crystals functioning as highly sensitive 
calorimeters.  The energy deposited by 
a particle interaction in the absorber 
is converted to a measurable 
temperature variation.

Heat bath

Thermal  
coupling 

Thermometer

Absorber

Interacting radiation

SEE TALK FROM STEFANO DELL’ORO
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Re-use CUORE infrastructure + 
1500 scintillating bolometer 
Li2100MoO4 (220 kg 100Mo) • Baseline:  

• bkgd ~ 10-4 cpy/kg/keV 

• T0ν
1/2 ~ 1.1·1027 yr 

• mββ: [12-20] meV  

• Reach:  

• bkgd ~ 2·10-5 cpy/kg/keV         

• T0ν1/2 ~ 2·1027 yr  

• mββ: [9-15] meV 

From arXiv:1907.09376 

Experimental technique: Ultracold scintillating crystals 
functioning as highly sensitive calorimeters with particle ID 
capability, due to the dual heat + light readout.



Experimental technique: Enriched 136Xe diluted (3%wt) in liquid 
scintillator in a mini-balloon deployed inside KamLAND. 

    KamLAND-Zen 800  
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Evolution of KamLAND-Zen

July 1, 2020 Neutrino 2020 3

CurrentPast Future

KamLAND-Zen 400 KamLAND-Zen 800 KamLAND2-Zen
Mini-balloon Radius = 1.54 m Mini-balloon Radius = 1.90 m
Xenon mass = 320 ~ 380 kg

2011 ~ 2015

Xenon mass = 745 kg
Started January 2019

Xenon mass ~ 1 ton

Phase I + Phase II:
!"/$ > ". '( × "'$* yr (90% C.L.)

Phys. Rev. Lett. 117, 082503

× 5 increase in light collection

Scintillation balloon film

Target:
!"/$ > $ × "'$( yr

“Future Neutrinoless Double Beta 
Decay Experiments” 

Jason Detwiler (next Session)

Target:
!"/$ > + × "'$* yr

Combined with KamLAND-Zen 400 

T0ν1/2 > 2.3·1026 yr at 90% C.L   

mββ < 36-156 meV  

Enters the IH region for the first time 
From Phys. Rev. Lett. 130, 051801 (2023)

Main background: muon induced Xe 
spallation product 

Reduced radioactive bkg 
Demonstration of scalability              
~1 Ton x yr  exposure   

@Kamioka
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Limits rely strongly on background model



    KamLAND-Zen2 

20

Evolution of KamLAND-Zen

July 1, 2020 Neutrino 2020 3

CurrentPast Future

KamLAND-Zen 400 KamLAND-Zen 800 KamLAND2-Zen
Mini-balloon Radius = 1.54 m Mini-balloon Radius = 1.90 m
Xenon mass = 320 ~ 380 kg

2011 ~ 2015

Xenon mass = 745 kg
Started January 2019

Xenon mass ~ 1 ton

Phase I + Phase II:
!"/$ > ". '( × "'$* yr (90% C.L.)

Phys. Rev. Lett. 117, 082503

× 5 increase in light collection

Scintillation balloon film

Target:
!"/$ > $ × "'$( yr

“Future Neutrinoless Double Beta 
Decay Experiments” 

Jason Detwiler (next Session)

Target:
!"/$ > + × "'$* yr

bkgd ~2 cpy/FWHM t yr 
dominated by 2νββ tail and 
8B solar ν elastic scattering 

Improvements: 

x 5 increase in light collection —> higher energy resolution 

Reduce 214Bi induced background: identify BiPo events in the balloon tagging α with 
scintillator film 

Particle ID with neural network 

New electronics for neutron tagging of spallation 

Target sensitivity: T0ν1/2 ~ 1·1027 yr —> mββ: [17-71] meV 

@Kamioka
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Experimental technique: Enriched 136Xe diluted (3%wt) in liquid scintillator in a 
mini-balloon deployed inside KamLAND. 



• 12-m diameter spherical acrylic vessel (AV) inside an ultra-pure water shield 

• 780 Ton natural-Te loaded liquid scintillator (LAB+2 g/l PPO Fluor)  
• Scintillation purification system + novel metal loading technique  
• 0.5% mass loading →1.3 Ton of 130Te 
• ΔEFWHM @Qββ: 190 keV (σE/E=3%)

SNO+

21

From JINST 16 P08059 (2021)

SNO+
SNO+  SNO+-phase II

Concept 

Reuse the acrylic vessel, the PMT array 

and the electronics of the SNO detector 

at SNOLAB with a new target:

 Novel metal loading technique

 780 tons of scintillator
 3.9 tons of natural tellurium
  1.3 tons of 130Te (34% I.A.)

 Scintillator purification system

natural-Te-loaded liquid scintillator 

(LAB + 2g/l PPO “fluor”)

Telluric acid TeA

Purification

Reaction with 
1.2-butanediol (BD)

Organo-metallic complex 
(TeBD) soluble in LAB
(0.5% mass loading)

arXiv:2104.11687v2

S.B. Biller – SNOLAB Future 

Project Workshop – May 2021

SNO+ consists of three phases

 Pure-water phase (from May 2017)
 measurement of the external background
 physics results (8B n’s, invisible nucleon decays)

 Liquid scintillator phase without Te (ongoing)
 measurement of scintillator background
 U, Th concentration  510-17 g/g 
 Background level low enough for 0nbb

 Te phase (from 2024) – Study of 2nbb and 0nbb

5 y sensitivity 

1.9×1026 y 

mbb < 30 - 104 meV

9.5 counts/y in ROI

Background budget and sensitivity

20

E = 190 keV FWHM @Qbb

TAUP 2021, M. Chen

@SNOLAB
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Experimental technique: Natural Te diluted in liquid scintillator inside the SNO 
experimental setup and infrastructure.

J. Detwiler

Scintillators: SNO+ Phase II
• 4 t → 6.5 t 130Te via increased loading in LAB 

• Up to several percent with improved light yield 

• Can use existing SNO+ Phase I Te loading systems  

• Inexpensive, no detector upgrade required 

• Background ~10 c/(FWHM t y)  
dominated by 8B solar ν scattering 

• Limit sensitivity (10 years): T1/2 > 1027 yr 

• Plan to increase loading after only 2.5 years of 
running in Phase I (1.3 t 130Te) 

• See posters 424, 425, 432, 533, 544
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SNO+ Phased Loading Plan

ROI Backgrounds in FV

From S. Biller

• 2017: water phase → external bkgd 

• 2019-ongoing: liquid scint. (no Te)→scintillator bkgd  

• From 2024: Te loaded liquid scintillator  

• Phase 2 evolution: 0.5% →3% loading (r&d on going)

T0ν1/2  ~ 2.1·1026 yr at 90% C.L  

T0ν1/2  > 1027 yr at 90% C.L 



• 200 kg LXe TPC (80% 136Xe) 

• Energy via scintillation + ionization 

• 3D topology for multi/single-site discrimination 

• ΔEFWHM @ Qββ: 66 keV (σE/E=1.15%)  

• bkgd: 1.7 · 10-3 cpy/kg/keV

EXO-200 

22

TAUP 2011, Munich Schwingenheuer, Double Beta Decay 20

Exo 200
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engineering run Dec 2010, 140 kg 
136

Xe filled in spring,

cathode at -8 kV,  s = 4.5% at 2.6 MeV using ionization,

design:  s=1.6% using ionization+scintilation 

0nbb T
1/2

 sensitivity 6.4x10
25

 y (90% CL), testing Hd-Ms

40 cm

6

FIG. 5. Best fit to the low background data SS energy spectrum for Phase I (top left) and Phase II (bottom left). The energy
bins are 15 keV and 30 keV below and above 2800 keV, respectively. The inset shows a zoomed in view around the best-fit
value for Q�� . (top right) Projection of events in the range 2395 keV to 2530 keV on the DNN fit dimension for SS and MS
events. (bottom right) MS energy spectra. The best-fit residuals typically follow normal distributions, with small deviations
taken into account in the spectral shape systematic errors.
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Final exposure: 234.1 kg yr 

T0ν1/2  > 3.5 · 1025 yr      

mββ< 93–286 meV (90% C.L.)

@WIPP

Qββ=2458 keV near 214Bi line 2448 keV
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From Phys.Rev.Lett. 123 (2019) 16, 161802

Experimental technique: Liquid Xenon Time Projection Chamber (TPC)
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Figure 10. Nominal model of event distributions in nEXO, projected onto each of the three axes used in the sensitivity analysis: (a)
event energy, (b) DNN 0⌫�� discriminator, and (c) standoff distance. The 0⌫�� decay signal corresponds to a half-life of 0.74 ⇥ 1028

yr.

Figure 11. Event distributions for an example of toy dataset (black points) and combined groups of the fitted PDFs projected onto
the three axes used in the sensitivity analysis. In (a) the event energy distribution is shown for SS-like events (DNN > 0.85) in the
central 2000 kg LXe and in the 2000-2800 keV region; (b) the DNN 0⌫�� discriminator distribution is shown for events with energy
within Q��± FWHM/2 and in the same central volume; and (c) the standoff distance distribution is shown for SS-like events within
Q��± FWHM/2. The 0⌫�� decay signal corresponds to a half-life of 0.74 ⇥ 1028 yr.

A negative log-likelihood (NLL) is minimized to
determine the best fit values for Ni in each toy dataset.
The profile likelihood-ratio is used as a test statistic
to build confidence intervals for exclusion or discovery
of 0⌫�� decay. The details of the statistical analysis
employed in this work are provided in Appendix A.

An example of a toy dataset assuming that 0⌫��

decay exists and has a half-life of 0.74 ⇥ 10
28 yr

is presented in Figure 11. The figure shows the
randomized data projected onto the three fitting
variables along with the best fitted PDFs, which
are grouped together based on similar characteristics.

Figure 11 (a) shows the energy distribution of SS-
like events in the central 2000 kg of LXe, where a
comparable rate is observed between signal and all
background components added together in the region
near Q�� . In Figure 11 (b), the DNN score distribution
is shown for events with energy within the FWHM
around Q�� and in the central 2000 kg of LXe, while
(c) shows the standoff distance distribution for SS-
like events within the same energy range. There is a
region where the signal is dominant over backgrounds
in the bins towards 0⌫��-like DNN score and innermost
volumes in the standoff distance, illustrating the 0⌫��
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@SNOLAB
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Experimental technique: Liquid Xenon Time Projection Chamber (TPC)

From J. Phys. G: Nucl. Part. 
Phys. 49, 015104 (2022)



• Scintillation light —> PMTs (Energy resolution) 

• EL —> SiPM array (tracking) 

‣ Next White: 5 kg, ΔEFWHM~1% (25 keV) 

‣ NEXT-100 (2022-26): 87 kg - bkgd: 4·10-4 cpy/kg/keV + 
ΔEFWHM~0.8%    

‣ T0ν1/2 ~ 7·1025 yr                    

‣ mββ: [66-281] meV 

‣ NEXT HD (1Ton): bkgd: 5 10-5 cpy/kg/keV + ΔEFWHM~0.5%  

‣ T0ν1/2 ~ 2·1027 yr 

‣ mββ: [12-50] meV

NEXT

24

G. Benato, Neutrino Oscillation Workshop, 4-11 Sep. 2022

● High-pressure ~10 bar with double readout (ionization + scintillation)
● Energy resolution ~1% FWHM demonstrated
● Particle tracking

→ Discrimination of ββ from α and single-β or γ events
● 2νββ decay measured by NEXT-White using 3.5 kg of Xe only!
● NEXT-100 under construction @ Canfranc

→ Expected background 5∙10-4 counts/keV/kg/yr
→ Expected resolution 0.5-0.7% FWHM

Gas-Xe TPCs: NEXT

25

2νββ measurement with 3.5 kg of Xe 
Phys.Rev.C 105 (2022) 5, 055501 
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Experimental technique: High pressure enriched xenon gas time 
projection chambers (HPXeTPC) with amplification of the ionization signal 
by electroluminescence (EL).

From arXiv:2005.06467v2

@Canfranc



Semiconductor
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The full picture
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From Rev. Mod. Phys. 95, 025002 (2023)



• Worldwide major effort underway for the preparation of ton-scale experiments designed for discovery  

• Fully explore the  Inverted Hierarchy region in the next 15 yr 

• Explore large fraction of Normal Hierarchy 

Conclusion
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NEUTRINOLESS 
DOUBLE BETA DECAY 

COULD BE WITHIN 
REACH

From Rev. Mod. Phys. 95, 025002 (2023)



Backup
27



An additional uncertainty to the NME comes from the so called gA “quenching”: 

• calculated 𝛃 decay matrix elements over-predicted measured value by a uniform factor 

• a direct quenching of about 0.7 of the axial coupling constant gA was suggested  

• large (1/2) impact on NME and dramatic (1/4) impact on 0𝛎𝛃𝛃 rates 

• recent ab-initio calculations of the 𝛃 decay rates well reproduce the measured ones without 
quenching

gA quenching
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