

The search for Neutrinoless Double Beta Decay

CLAUDIA TOMEI - INFN SEZIONE DI ROMA

The questions

- SM symmetries
 - Conservation of total lepton number L, B L
- Neutrino properties
 - ≠ mass eigenstates (PMNS matrix)
 - Unknown nature: Dirac or Majorana
 - Unknown absolute mass

Crucial for theories explaining the dominance of matter over antimatter in the Universe

• Stable neutral elementary fermion, 3 families, only EW interactions, flavour eigenstates

Neutrino nature and mass scale

These neutrino properties are not accessible by oscillation experiments:

• Dirac vs Majorana nature

double-beta decay

- Absolute neutrino mass scale
 - \rightarrow end-point of β -decay spectrum
 - cosmological data
 - double-beta decay

THE DISCOVERY THAT NEUTRINOS HAVE MASS CALLS FOR AN EXPLANATION OF SUCH MASS AND HAS INCREASED THE INTEREST IN THE NEUTRINOLESS DOUBLE BETA DECAY

Double beta decay $(A, Z) \rightarrow (A \qquad \Delta L = 0 \qquad \Delta L = 0 \qquad \Delta C = 0 \qquad$ Nuclear mass forbidden 2νββ Z-2 $(A, Z) \Rightarrow (A, Z+2)+2e^{-2}$ $(A,Z) \rightarrow (A,Zv+2) + 2e^{-} + 2\overline{\nu}$

2nd order weak process allowed by the SM

Observed in several nuclei with half-life $\ge 10^{18}$ yr

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

- Forbidden by the SM, violates L and B-
- Simplest model: exchange of a light Majorana neutrino

 $m_{\nu} \neq 0$ and $\Psi \equiv \Psi C$ (unique among fermions)

Half-life $\gtrsim 10^{25-26}$ yr

Experimental signature: 2 e⁻ with summed kinetic energy at $Q_{\beta\beta}$

Spectrum of e⁻ summed kinetic energy = monochromatic line at $Q_{\beta\beta}$ (~2-4 MeV)

The half-life

• The measurable quantity is the half-life:

 $(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M_{\eta}^{0\nu}|^2 \eta^2$

Phase space factor: known with good accuracy from atomic physics. Contains the information on the kinematics in the final state.

Nuclear matrix element (nuclear physics) is affected by a large uncertainty

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

Decay mechanism (particle physics) is unknown

 Assuming the simplest scenario of the exchange of a light Majorana neutrino

$$m_{\beta\beta} = |\sum_{i} m_{i} \cdot U_{ie}^{2}|$$

From T_{1/2} to mßß

The uncertainty associated with the nuclear matrix element is commonly addressed by comparing NMEs calculated with different theoretical approaches

> **ABOUT A FACTOR 3 SPREAD: DIFFERENT APPROXIMATIONS IN THE SOLUTION OF THE MANY BODY PROBLEM** ASSOCIATED WITH THE HEAVY $\beta\beta$ **EMITTING NUCLEUS**

From Rev. Mod. Phys. 95, 025002 (2023)

Experimental Sensitivity

- the age of the Universe;
- decay in a single one of them.

Half-life corresponding to the minimum number of detectable signal events above background at a given C.L.

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

• Probed half-lives so far are of the order of 10²⁵-10²⁶ y, many orders of magnitude longer than

Experiments have to monitor thousands of moles of atoms for years and be able to detect the

Experimental Sensitivity

- Isotopic abundance \rightarrow enrichment
- Exposure (M·T) \rightarrow tons of isotope
- Energy resolution:
 - high (‰ of $Q_{\beta\beta}$)
 - low (% of $Q_{\beta\beta}$)

IMPORTANT TO GET RID OF THE IRREDUCIBLE BKG FROM $2\nu\beta\beta$ **DECAY AND IDENTIFY AND DISENTANGLE THE VARIOUS CONTRIBUTION TO THE** BACKGROUND

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

Background

external background:

neutrons, gammas and cosmic ray fluxes from the environment

- internal background: trace amounts of radioactivity in the detectors and the materials constituting the experimental apparatus
- 2-neutrino double beta decay of the same isotope
 - events leaking from the 2ν continuum spectrum
 - pile-up

The background

The most crucial among the parameters determining the sensitivity of an experiment

Reduction strategies:

- Underground experiments
- Ultra-pure materials (screening, purification, clean assembly)

Discrimination strategies:

- High energy resolution
- Active veto
- Tracking, particle ID
- Fiducial volume
- Granularity, anti-coincidence
- Pulse shape discrimination (PSD)
- Ion Identification

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

SIGNAL: 0.1 - 1 COUNT/TON/Y

BACKGROUND: 0.01 - 0.1 COUNT/TON/Y

Credits: Nature

Neutrino mass probes

- Cosmology
 - Sensitive to Σm_{ν}
 - The most sensitive probe but model dependent
- Model independent direct measurement
 - β and Electron Capture decay: measure
- $0\nu\beta\beta$ decay
 - If Majorana particles, in simplest model

THE RESULTS OF NEUTRINO OSCILLATION **EXPERIMENTS, THE PARAMETER SPACE OF THESE MASS PROBES IS CONSTRAINED**

$$e(m_{eta}^2 = \sum_i |U_{ei}|^2 m_i^2)$$

I sensitive to $(m_{etaeta} = |\sum_i m_i \cdot U_{ie}^2|)$

Present knowledge from oscillations

- Three-neutrino fit based on data available in November 2022
- nuFIT 5.2 (2022) JHEP 09 (2020) 178

(2)		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi$	
		bfp $\pm 1\sigma$	37 range	bfp $\pm 1\sigma$	3σ
without SK atmospheric data	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	0.270
	$\theta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	31.31
	$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.406 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	0.412
	$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	39.9
	$\sin^2 \theta_{13}$	$0.02203\substack{+0.00056\\-0.00059}$	$0.02029 \rightarrow 0.02391$	$0.02219^{+0.00060}_{-0.00057}$	0.02047
	$\theta_{13}/^{\circ}$	$8.54_{-0.12}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.12}_{-0.11}$	8.23
	$\delta_{ m CP}/^{\circ}$	197^{+42}_{-25}	$108 \to 404$	286^{+27}_{-32}	192
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	6.82
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \ {\rm eV}^2}$	$+2.511^{+0.028}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498\substack{+0.032\\-0.025}$	-2.581

mßß parameter space

allowed parameter space for $m_{\beta\beta}$ as a function of m_{light} , m_{β} , and Σ , assuming the central value of the neutrino oscillation parameters

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

From Rev. Mod. Phys. 95, 025002 (2023)

The worldwide experimental effort

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

LIQUID AND GAS TPC

Large mass (easier to scale wrt solid)

resolution

High energy resolution and efficiency Limited mass wrt liquid

LOADED LIQUID SCINTILLATORS

HPGE DETECTORS

Suspending Film Strap Photomultiplier Tube ThO₂W Calibration Point

LEGEND-200

Experimental technique: Bare HPGe detectors, ~90% enriched in ⁷⁶Ge in LAr instrumented as active veto

Bringing together the technological expertise and experience from the GERDA experiment (lowest background) and MAJORANA DEMONSTRATOR (best energy resolution).

Upgraded GERDA infrastructure + 200 kg HPGe detector: lower background

higher energy resolution

Stable data taking with 140 kg since March 2023

LEGEND1000

Experimental technique: Bare HPGe detectors, ~90% enriched in ⁷⁶Ge in LAr instrumented as active veto

Bringing together the technological expertise and experience from the GERDA experiment and MAJORANA DEMONSTRATOR.

New infrastructure:

- Baseline underground site SNOLAB
- LNGS alternative, depth influences ^{77(m)}Ge background
- 14 vertical string
- Electroformed copper for physical support
- Immersed in UGLAr
- Wavelength-shifting fiber curtain to read the scintillation light

Bkgd ~2 · 10⁻⁵ cpy/kg/keV

 $T^{0v}_{1/2} \sim 1.3 \cdot 10^{28} \text{ yr } m_{\beta\beta}$: [9-21] meV

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

@SNOLAB/LNGS

CUORE

Larger bolometric detector ever built

- 988 natTeO₂ crystals
- 742 kg of TeO2, 206 kg ¹³⁰Te.

Since 2019: data taking with high duty cycle and stable performances Collected exposure exceeded ~2 Ton yr @LNGS $\Delta E_{FWHM} @Q_{\beta\beta} \sim 7 \text{ keV} (\sigma_E / E \sim 0.1\%)$ bkgd: ~10⁻² cpy/kg/keV Pulse Tube

Experimental technique: Ultracold crystals functioning as highly sensitive calorimeters. The energy deposited by a particle interaction in the absorber is converted to a measurable temperature variation.

SEE TALK FROM STEFANO DELL'ORO

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

Nature 604 (2022) 7904, 53-58 Exposure ~1 Ton yr (~300 kg yr ¹³⁰Te) $T^{0v}_{1/2}$ > 2.2 · 10²⁵ yr @90% C.I. 90 - 305 meV @90% C.I.

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

Particle ID gives x100 bkgd reduction wrt CUORE

KamLAND-Zen 800

Experimental technique: Enriched ¹³⁶Xe diluted (3%wt) in liquid scintillator in a mini-balloon deployed inside KamLAND.

Limits rely strongly on background model

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

@Kamioka

Main background: muon induced Xe spallation product

Reduced radioactive bkg Demonstration of scalability ~1 Ton x yr exposure

Combined with KamLAND-Zen 400

 $T^{0v}_{1/2}$ > 2.3 · 10²⁶ yr at 90% C.L

m_{ββ} < 36-156 meV

Enters the IH region for the first time

n			

KamLAND-Zen2

Experimental technique: Enriched ¹³⁶Xe diluted (3%wt) in liquid scintillator in a mini-balloon deployed inside KamLAND.

Improvements:

x 5 increase in light collection \rightarrow higher energy resolution

Reduce ²¹⁴Bi induced background: identify BiPo events in the balloon tagging a with scintillator film

Particle ID with neural network

New electronics for neutron tagging of spallation

Target sensitivity: $T^{0v}_{1/2} \sim 1 \cdot 10^{27}$ yr —> m_{\beta\beta\beta}}: [17-71] meV

SNO+

Experimental technique: Natural Te diluted in liquid scintillator inside the SNO experimental setup and infrastructure.

- 12-m diameter spherical acrylic vessel (AV) inside an ultra-pure water shield
- 780 Ton natural-Te loaded liquid scintillator (LAB+2 g/l PPO Fluor)
 - Scintillation purification system + novel metal loading technique
 - 0.5% mass loading \rightarrow 1.3 Ton of ¹³⁰Te
 - $\Delta E_{FWHM} @Q_{\beta\beta}: 190 \text{ keV} (\sigma_F/E=3\%)$

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

From JINST 16 P08059 (2021)

T^{ov}_{1/2} > 10²⁷ yr at 90% C.L

@SNOLAB

 $T^{0v}_{1/2} \sim 2.1 \cdot 10^{26}$ yr at 90% C.L

2019-ongoing: liquid scint. (no Te)→scintillator bkgd

Phase 2 evolution: $0.5\% \rightarrow 3\%$ loading (r&d on going)

2.5% Te

1.5% Te Transiti

EXO-200

- 200 kg LXe TPC (80% 136 Xe)
 - 3D-topology for multi/single-site discrimination

CLAUDIA TOMEI - THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

From Phys.Rev.Lett. 123 (2019) 16, 161802

EXO-200/nEXO

Experimental technique: High pressure enriched xenon gas time projection chambers (HPXeTPC) with amplification of the ionization signal by electroluminescence (EL).

- Scintillation light —> PMTs (Energy resolution)
- EL —> SiPM array (tracking)
- Next White: 5 kg, $\Delta E_{FWHM} \sim 1\%$ (25 keV)
- NEXT-100 (2022-26): 87 kg bkgd: 4 · 10⁻⁴ cpy/kg/keV + $\Delta E_{FWHM} \sim 0.8\%$
- T^{ov}_{1/2} ~ 7 · 10²⁵ yr
- m_{ββ}: [66-281] meV
- NEXT HD (1Ton): bkgd: 5 10⁻⁵ cpy/kg/keV + ΔE_{FWHM} ~0.5%
- $T^{0v}_{1/2} \sim 2 \cdot 10^{27} \text{ yr}$
- m_{ββ}: [12-50] meV

 $2\nu\beta\beta$ measurement with 3.5 kg of Xe Phys.Rev.C 105 (2022) 5, 055501

- Worldwide major effort underway for the preparation of ton-scale experiments designed for discovery
- Fully explore the Inverted Hierarchy region in the next 15 yr
- Explore large fraction of Normal Hierarchy

Backup

gaquenching

An additional uncertainty to the NME comes from the so called g_A "quenching":

- calculated β decay matrix elements over-predicted measured value by a uniform factor
- a direct quenching of about 0.7 of the axial coupling constant g_A was suggested
- large (1/2) impact on NME and dramatic (1/4) impact on $0\nu\beta\beta$ rates
- recent ab-initio calculations of the β decay rates well reproduce the measured ones without quenching

28