RESONANT HADRON SYSTEMS FROM:

DE-SC0016582 DE-SC0016583

PHY 2012289 Phenomeno

logy

Effective field theory

Symmetries/EFTs

Phenomeno

logy

. . .

Lattice

QÇD

1.1.1

Ulf-G Meißner (U. Bonn, FZ Jülich) Bastian Kubis (U. Bonn) Evgeny Epelbaum (U. Bochum)

Chiral Unitary approaches

Ulf-G Meißner (U. Bonn, FZ Jülich) Daniel Sadasivan (Ave Maria U.) LiSheng Geng (Beihang U.) Aleš Cieply (Rež) Michael Döring (GWU/JLAB)

Data driven tools

. . .

Justin Landay (GWU) Dave Ireland (U. Glasgow)

Meson electroproduction [Jülich-Bonn-Washington Collaboration]

Ron Workman (JBW, GWU) Michael Döring (GWU/JLAB) Deborah Rönchen (FZ Jülich)

Helmut Haberzettl (GWU)

3-body scattering and quantisation condition [FVU]

Michael Döring (GWU/JLAB) Adam P. Szczepaniak (U. Indiana/JLAB) Alessandro Pilloni (U. Messina)

Finite-volume effects

Akaki Rusetsky (U. Bonn) Ulf-G. Meißner (U. Bonn) Michael Döring (GWU/JLAB) Daniel Severt (U. Bonn)

2/3-body lattice spectroscopy [GWQCD collaboration]

Michael Döring (GWU/JLAB) Chris Culver (U. Liverpool) Ruairi Brett (GWU) Andrei Alexandru (GWU) Frank X. Lee (GWU)

[Extended Twisted Mass collaboration]

Carsten Urbach (U. Bonn) Ferenc Pittler (U. Cyprus) Marco Garofalo (U. Bonn)

HADRON SPECTROSCOPY

Mostly excited states

 \approx 100 mesons & \approx 50 baryons (****)

Key questions

"what is the pattern of these states?"

"how they are formed?"

- R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) — 3

HADRON SPECTROSCOPY

Physical input

- many experimental data
- ongoing experiments^[1]

Resonance parameter

"Not every bump is a resonance, not every resonance is a bump" - R. G. Moorhouse (1960s)

UNIVERSAL PARAMETERS

Reaction-independent parameters

- pole positions on unphysical Riemann Sheets
- central quantity: **transition amplitudes**

Review: ``Towards a theory of hadron resonances' Phys. Rept. 1001 (2023) -MM/Meißner/Urbach

Talks: Szczepaniak, Guo, Rodas, Pelaez, Döring, ...

Universal property of the ρ – meson

UNIVERSAL PARAMETERS

Reaction-independent parameters

- pole positions on unphysical Riemann Sheets
- central quantity: transition amplitudes
 - → Constraints from S-matrix (Unitarity/Analyticity/Crossing)
 - → Constrains from QCD (CHPT/LatticeQCD)

Review: ``Towards a theory of hadron resonances'' Phys. Rept. 1001 (2023) -MM/Meißner/Urbach Talks: Szczepaniak, Guo, Rodas, Pelaez, Döring, ...

— 6 —

INDIVIDUAL STATES

MESON-BARYON RESONANCES FROM CHPT AND UNITARITY

RESONANT MESON-BARYON SYSTEMS

Many examples:

- N*(1535), N*(1650), ...
- Λ(1405), Λ(1380)
 - → Long history of experimental and theoretical efforts^[1]

[1] **Reviews**: MM Eur.Phys.J.ST 230 (2021); Hyodo/Niiyama Prog.Part.Nucl.Phys.120 (2021)

Pro

		(1105)	⊢
NNLO UCHPT	YouYouYouYou2023(?) (LQCD)2022 Sadasivan et al.2022 Lu et al.	Klong 20xx SIDDHARTA2 20xx	Kaon bean Kaonic De
	2019 Anisovich et al. 2018 Bayar et al. 2018 Revai et al. 2018 Sadasivan et al	AMADEUS 2022	K- absorption
Lattice QCD	2016 Cieply et al. 2015 Hall et al. (LQCD) 2014 Mai/Meißner 2013 Roca/Oset	AMADEUS 2018	in-flight capture
	2013 Guo/Oller 2012 Mai/Meißner 2012 Ikeda/Hyodo/Weise	CLAS 2015	Photoproductio
		HADES 2013	
		SIDDHARTA 2011	Kaonic Hydroge
UCHPT Baryon ChPT	1998 Oset/Ramos 1995 Kaiser et al.		
ChPT	1985 Veitand et al.	COSY 2008	pp collisions
	1978 Isgur/Karl	CERN 1985	Sequential dec
Quark model		Rutherford Lab 1980s	Bubble chamb
	1960 Dalitz/Tuan	LNL 1960s	
	1959 Dalitz/Tuan		
— 8 —			

TRANSITION AMPLITUDE

One way:

- Chiral Perturbation Theory (#QCD#EFT) dictates the form • of the interaction at low energies
- Unitary scattering amplitude from the Bethe-Salpeter equation
 - \rightarrow Fit free parameters to experimental data / LQCD
 - \rightarrow Extract complex pole positions for complex energies

S-matrix theory

CURRENT FRONTIER

- Lattice QCD [2 poles] (Talks: Morningstar/Leinweber)
- New experimental facilities (Talks: Francesco Sgaramella/...)

INDIVIDUAL STATES

THREE-BODY SYSTEMS

HADRONIC 3-BODY PROBLEM

- Many known states have large 3-body content:
 → Roper(1440)/X(3872)/a₁(1260)/...
- Beyond Standard Model searches (au-EDM/...)
- Exotic states of matter^[1]

- 12 - R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

TRANSITION AMPLITUDE

Three-body scattering amplitude^{[1][2]}

- constructed from unitarity
- novel result from the S-matrix theory

[1] MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017)

[2] Related approaches: Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C79 (2019);

Data: Schael [ALEPH] Phys.Rept. 421 (2005); Estabrooks et al. Nucl.Phys.B 79; Protopopescu et al. Phys.Rev.D 7;

Sadasivan/MM/Döring/Alexandru/Culver/Lee Phys.Rev.D 101 (2020)

1.30

Re \sqrt{s} [GeV]

1.25

1.20

1.40

1.35

[1] MM/Culver/Döring/Alexandru/Lee/Brett/Sadasivan [GWQCD] Phys.Rev.Lett. 127 [2] Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

a1(1260)"Heavy Universe" $(M_{\pi}: 138 \text{ MeV} \rightarrow 224 \text{ MeV})$

 $T^{c} = B + C + \left[\frac{d^{3}\ell}{(2\pi)^{3}} \frac{(B+C)}{2E_{l}} \frac{1}{\tilde{K}^{-1} - \Sigma_{u}}T^{c}\right]$

— I5 —

More in M. Döring's talk #1

a1(1260)"Heavy Universe" $(M_{\pi}: 138 \text{ MeV} \rightarrow 224 \text{ MeV})$

GLOBAL PROPERTIES

MESON-ELECTROPRODUCTION

PHOTON-INDUCED EXCITATION

[2] Carman, Joo, Mokeev, Few Body Syst. 61, 29 (2020) ...; [CLAS] Phys.Rev.C 105 - 18 - (2022) 065201; ...

TRANSITION AMPLITUDES: PREVIOUS APPROACHES

[1] ANL-Osaka PRC 80(2009), Few-Body Syst. 59(2018),... [2] MAID2007, EPJA 34(2007) EtaMAID2018, EPJA 54(2018) [3] SAID, PiN Newsletter 16(2002) [4] Gent group PRC 89(2014),... Aznauryan et al., PRC 80(2009), IJMP(2013),...

Some highlights

→ ...

- \rightarrow simultaneous description of pion photo-/ electroproduction (MAID)
- \rightarrow low-energy constraints from CHPT (chiral MAID)

TRANSITION AMPLITUDES: NEW APPROACH

[1] ANL-Osaka PRC 80(2009), Few-Body Syst. 59(2018),... [2] MAID2007, EPJA 34(2007) EtaMAID2018, EPJA 54(2018) [3] SAID, PiN Newsletter 16(2002) [4] Gent group PRC — 20 — [5][JBW] MM et al. <u>Phys.Rev.C 103 (2021) 6</u> / <u>Phys.Rev.C 106 (2022) 015201</u> 89(2014),... Aznauryan et al., PRC 80(2009), IJMP(2013),...

Jülich-Bonn-Washington

- coupled-channel approach (πN , ηN , $K\Lambda$, $K\Sigma$, ...)
- constraints from scattering data and theory:
 - → gauge invariance
 - → (pseudo) threshold behaviour
 - \rightarrow Final-state unitarity
- web-interface: https://jbw.phys.gwu.edu/

M. Döring's talk #2 [6 Jun 2023, 17:20 DAD/5L]

INTERPOLATIONS AND PREDICTIONS

Fits accomplished: $\pi^0 p/\pi^+ n/\eta p/(+K\Lambda upcoming)^{[1]}$

Example: Joo data^[2]

- not measured quantities can be estimated
- interpolator over observable types and kinematics

[1] [JBW] MM et al. Phys.Rev.C 103 (2021) 6 / Phys.Rev.C 106 (2022) 015201
[2] Joo et al. [CLAS] PRC (2003), PRL (2002)

INTERPOLATIONS AND PREDICTIONS

Fits accomplished: $\pi^0 p/\pi^+ n/\eta p/(+K\Lambda \text{ upcoming})^{[1]}$

Example: Joo data^[2]

- not measured quantities can be estimated
- interpolator over observable types and kinematics

[1] [JBW] MM et al. <u>Phys.Rev.C 103 (2021) 6</u> / <u>Phys.Rev.C 106 (2022) 015201</u>
[2] Joo et al. [CLAS] PRC (2003), PRL (2002)

— 22 —

INTERPOLATIONS AND PREDICTIONS

Example: Roper(1440)

- Non-trivial Q² behaviour
 - → complex structure (**3-body effects, …)**
 - → Helicity couplings (upcoming)

New synergetic approaches to universal parameters of resonance become available

SUMMARY

 \rightarrow QCD symmetries constraints to hadron-hadron dynamics → Strong predictive power

• Lattice hadron spectroscopy

→Novel 3-body methodology has matured

 \rightarrow EFTs and S-matrix theory: bridge to real world physics

• Phenomenological models

 \rightarrow Link between observables and transition amplitudes

THANK YOU

TRANSITION AMPLITUDE

Final-state unitarity

- Jülich-Bonn dynamical coupled-channel model¹
- Amplitudes fixed from scattering and photoproduction data

 $\pi N \rightarrow xX$ and $\gamma N \rightarrow xX$ (~60k data)

— 26 — [JBW] MM et al. Phys.Rev.C 103 (2021) 6 / Phys.Rev.C 106 (2022) 015201

SYMMETRIES

Five kinematical variables (3*(2+3)-10=5)

- total energy: W
- photon virtuality: Q²
- angles: θ_{e} , $\theta_{g}\varphi$
- Underlying objects^{1,2}:
- Helicity amplitudes:
- Multipoles:

$\{H_i(W, Q^2, \theta) | i = 1..8\}$

$\mathscr{M}_{\ell^+}(W, Q^2) \in \{E_{\ell^+}(W, Q^2), L_{\ell^+}(W, Q^2), M_{\ell^+}(W, Q^2)\}$

1) Chew et al. Phys.Rev. 106 (1957); Dennery Phys.Rev. 124 (1961); Berends et al. Nucl.Phys.B 4 (1967); 2) (for explicit formulas) MM et al. Phys.Rev.C 103 (2021)

THEORETICAL CONSTRAINTS

Gauge invariance

- manifest implementation¹ too costly
- instead Ward-Takahashi identity by construction

Pseudo/threshold constraints:

Siegert's theorem²

• Long-wavelength limit: electric and magnetic multipoles are related

... fewer parameters needed 👍

1) Afnan et al.(1995); Kvinikhidze et al.(1999); Haberzettl(19xx-2021); Borasoy et al. (2007); Ruic et al.(2011); MM et al. (2012); Bruns, Cieplý, MM 2206.08767 [nucl-th]

2) Siegert(1973) Amaldi et al.(1979) Tiator(2016)

$$\longrightarrow H_7 = \sum_{i=1}^6 a_i H_i \quad H_8 = \sum_{i=1}^6 b_i H_i$$

$$\lim_{k\to 0} E_{\ell+} = k^{\ell} \dots$$

$\longrightarrow L_{\ell\pm} \sim E_{\ell\pm}$ for q=0

MULTIPOLES

 $\mathcal{M}_{\mu\gamma^*}(W,Q^2) = R_{\ell'}(\lambda,q/q_{\gamma}) \left(V_{\mu\gamma^*}(W,Q^2) + \sum_{\kappa} \int_{0}^{\infty} dp \, p^2 \, T^{\text{JUBO}}_{\mu\kappa}(p,W) G_{\kappa}(p,W) V_{\kappa\gamma^*}(p,W,Q^2) \right)$ $V_{\mu\gamma}^{\text{JUBO}}(W)e^{-\beta_{\mu}^{0}Q^{2}/m_{p}^{2}}\left(1+Q^{2}/m_{p}^{2}\beta_{\mu}^{1}+(Q^{2}/m_{p}^{2})^{2}\beta_{\mu}^{2}\right)$

- Final state unitarity / Gauge invariance / Siegert's theorem / Threshold behaviour Describes:
- Scattering and photoproduction data -- parameters (λ, β) from fits to electroproduction data

Parametrization dependence due to incomplete data ... even for a truncated complete electroproduction experiment ... in future: Bias-variance tradeoff with statistical criteria

Tiator et al.(2017)Landay et al., Phys.Rev.D (2019), 1810.00075 [nucl-th] (2019)

DATA AND PARAMETERS

Experimental data

• $45k(\pi^{0}p) + 37k(\pi^{+}n) + 2k(\eta p) = 84k$ data

Parameters $\{\lambda, \beta\}$

- S/P/D waves
- 26 multipoles \times (10..13 pars) = 257 pars

1) [JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201

DATA AND PARAMETERS

Fits¹:

- multiple solutions obtained
- systematic uncertainties studied

	$\chi^2/{ m dof}$	$\chi^2_{\pi^0 p/ ext{data}}$	$\chi^2_{\pi^+n/ ext{data}}$	$\chi^2_{\eta p/ ext{data}}$
${oldsymbol{\mathfrak{F}}}_1^{\operatorname{reg}}$	1.66	1.68	1.61	1.77
${\mathfrak F}_2^{ m reg}$	1.73	1.71	1.71	2.29
$\mathfrak{F}_3^{\mathrm{reg}}$	1.69	1.69	1.66	1.89
${\mathfrak F}_4^{ m reg}$	1.69	1.7	1.64	2.05
${\mathfrak F}_1^{ m wt}$	1.54	1.74	1.63	1.25
$\mathfrak{F}_2^{\mathrm{wt}}$	1.63	1.82	1.79	1.27

GLOBAL FEATURES

Predictive power

- example: Joo data²
- not measured quantities can be estimated:
 - interpolator over observable types and kinematics
 - already usable through web-interface

https://jbw.phys.gwu.edu/

1) [JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201 2) Joo et al. [CLAS] PRC (2003), PRL (2002)

RESULTS

 πN data fits':

- →all strategies converge
- →different minima (systematic uncertainties)

 \rightarrow Kelly data²

[JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201
 <u>Jefferson Lab Hall A</u> Collaboration Phys.Rev.Lett. 95 (2005) 102001

RESULTS

Fits¹:

- →all strategies converge
- →different minima (systematic uncertainties)

Fit	σ_L		$d\sigma/d\Omega$		$\sigma_T + \epsilon \sigma_L$		σ_T		σ_{LT}		$\sigma_{LT'}$		σ_{TT}		K _{D1}		P_Y		ρ_{LT}		
	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	π^0
\mathfrak{F}_1	_	9	65355	53229	870	418	87	88	1212	133	862	762	4400	251	4493	_	234	_	525	_	33(
\mathfrak{F}_2	_	4	69472	55889	1081	619	65	78	1780	150	1225	822	4274	237	4518	_	325	_	590	_	354
\mathfrak{F}_3	_	8	66981	54979	568	388	84	95	1863	181	1201	437	3934	339	4296	_	686	_	687	_	355
\mathfrak{F}_4	_	22	63113	52616	562	378	153	107	1270	146	1198	1015	4385	218	5929	_	699	_	604	_	354
\mathfrak{F}_5	_	20	65724	53340	536	528	125	81	1507	219	1075	756	4134	230	5236	_	692	_	554	_	358
\mathfrak{F}_{6}	_	18	71982	58434	1075	501	29	68	1353	135	1600	1810	3935	291	5364	_	421	_	587	_	393

MULTIPOLES

Chew et al. Phys.Rev. 106 (1957); Dennery Phys.Rev. 124 (1961); Berends et al. Nucl.Phys.B 4 (1967); ... (for explicit formulas) MM et al. Phys.Rev.C 103 (2021)

$$\frac{d\sigma^{\nu}}{d\Omega} \left(W, Q^2, \epsilon, \theta, \phi \right) = \sigma_T + \epsilon \sigma_L + \sqrt{2\epsilon(1+\epsilon)} \sigma_{LT} \cos \phi + .$$

$$V, Q^2, \theta$$
 = $k/q_{\gamma} \left(|H_1|^2 + |H_2|^2 + |H_3|^2 + |H_4|^2 \right) / 2, \dots$

$$H_1(W, Q^2, \theta) = \sin \theta \cos \theta / 2(-\mathcal{F}_3 - \mathcal{F}_4) / \sqrt{2}, \dots$$

$$\left(W, Q^2, \theta\right) = \sum_{\ell \ge 0} \ell M_{\ell+1}(W, Q^2) P'_{\ell+1}(\cos \theta) + \dots$$

 $\{E_{\ell \pm}(W, Q^2), L_{\ell \pm}(W, Q^2), M_{\ell \pm}(W, Q^2)\}$

RESULTS

Delta(1232):

- Large multipoles well determined
- simple Q² dependence

[JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201

RESULTS

Ambiguities in the data:

• example ηN data²

[JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201
 H. Denizli et al. (CLAS) PRC 76, 015204 (2007); Thompson et al. (CLAS), PRL86, 1702–1706 (2001); ...

RESONANCE POLE(S)

Inclusion of chiral symmetry constants demands a second state¹:

 $W^* = (1325...1381) - i(56...114) MeV$ $\rightarrow \text{ Common phenomenon in hadron physics}^2$

1)Oller/Meißner (2001); Ikeda/Hyodo/Weise(2011); MM/Meißner(2012); Guo/Oller(201 2)Meißner, Symmetry 12 (2020) 6, 981

HADRONIC 3-BODY PROBLEM: IMPACT

Hadron spectroscopy riddles

- Roper(1440) $\rightarrow \pi\pi N$ [first FV evaluations¹]
- $X(3872) \rightarrow DbarD\pi$
- $a_1(1260) \rightarrow \pi\pi\pi$

. . .

- 1) Severt/MM/Meißner JHEPO4(2023) >>> PHD talk on Friday
- 2) Sirunyan et al. [CMS@CERN] PRL122
- 3) Experimental programs: GlueX@JLAB; COMPASS@CERN;

— 39 —

BROADER IMPACT

Twice non-perturbative regime of QCD

- too low for perturbative QCD
- too high for low-energy EFT

Antikaons in nuclear medium

- Strangeness in the EoS of neutron stars
- K-condensate can change EoS-stiffness

KbarNN & KbarNNN bound states

- dominated by KbarN interaction
- KbarN input is critical for interpretation

a_I(1260) PHENOMENOLOGY

- Fix quantum numbers to $a_1(1260) \rightarrow \pi\pi\pi$
- solution via complex spectator momentum
- unknown parameter from fits¹ to data

1) Sadasivan/MM/Döring/Alexandru/Culver/Lee Phys.Rev.D 101(2020)

Data: Schael [ALEPH] Phys.Rept. 421 (2005); Estabrooks et al. Nucl.Phys.B 79; Protopopescu et al. Phys.Rev.D 7;

LATTICE HADRON SPECTROSCOPY

• Numerical evaluation of QCD Green's functions

$\mathcal{L}_{\text{QCD}} = \sum \bar{q}_f^a (i \not{D}_{ab} - m_f \delta_{ab}) q_f^b - \frac{1}{\Delta} G_{\mu\nu}^a G_a^{\mu\nu}$

LATTICE HADRON SPECTROSCOPY

Many studies of 2-body systems¹

1)[NPLQCD], [RQCD], [ETMC], [HadSpec], ...

2)Reviews: Briceño/Dudek/Young Rev.Mod.Phys. 90 (2018); MM/Meißner/Urbach Phys.Rept.42001 (2023)

LATTICE HADRON SPECTROSCOPY

- Experimentally inaccessible scenarios:
 - → Unconventional quantum numbers
 - → Three-body scattering
 - → Unphysical pion mass (chiral trajectories)

1)[NPLQCD], [RQCD], [ETMC], [HadSpec], ...

. . .

2)Reviews: Briceño/Dudek/Young Rev.Mod.Phys. 90 (2018); MM/Meißner/Urbach Phys.Rept.41001 (2023)

MM/Culver/Brett/Alexandru/Döring/Lee Phys.Rev.D

Review: MM/Döring/Rusetsky EPJ ST (2021)

HADRONS IN A OX B

Heavily simplified: on-shell particle-configurations: $\Delta E \sim mL$ off-shell particle-configurations: $\Delta E \sim e^{-mL}$

- 1) Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...
- 2) Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

— 45 —

3-BODY QUANTISATION CONDITION

Finite-volume unitarity (FVU)^{1,2}

- separates volume dependent terms
- volume independent terms connect infinite/finitevolume spectra

- 1) Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...
- 2) Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

— 46 —

- First LQCD calculation¹ of a resonant 3b system
 - $N_f = 2$ dynamical fermions
 - LapH smearing
 - P = (0, 0, 0)
 - m_{π} =**224** MeV, m_{π} L=3.3
 - GEVP with one-/two-/three-meson operators

MCAVICI

Universe"

127

- TEAVIEL
- **Universe**"

HADRONS IN A BOX

Finite-volume spectrum is real and discrete!
... requires mapping: Quantization condition^{1,2}
Heavily simplified:
on-shell particle-configurations: ΔE~mL
off-shell particle-configurations: ΔE~e^{-mL}
A unitary "T-matrix" accounts for all O(mL) effects!

- 1) Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...
- 2) Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/

GRAVITATIONAL 3-BODY PROBLEM

... not that we talk about

- birth of mathematical chaos¹
- no closed solution
- in general non-repeating trajectories

Current frontier: 3-body dynamics from LQCD ► 3-body Quantization Conditions¹ ► RFT / FVU / NREFT → many perturbatively interacting systems are

studied²

1) Rusetsky, Bedaque, Grießhammer, Sharpe, Meißner, Döring, Hansen, Davou Guo....

Reviews:

- Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019);
- MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);
- 2) MM/Döring PRL122(2019); Blanton et al. PRL 124 (2020); Hansen et al. PRL

$$0 = \det\left(L^3\left(\tilde{F}/3 - \tilde{F}(\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1}\tilde{F}\right)^{-1} + K_{\rm df},\right)$$

$$0 = \det \left(B_0 + C_0 - E_L \left(K^{-1} / (32\pi) + \Sigma_L \right) \right)$$
 FVU

Variate $g(\varphi_1 \rightarrow \varphi_0 \varphi_0 \varphi_0)$ coupling:

- avoided level crossing becomes wider
- RFT and FVU

AVOIDED LEVEL CROSS

	The stand of the stand						
	a	m_1	c_0	c_1	m_1'	c_0'	c_1'
FVU	-0.1512(9)	3.0229(1)	-0.0188(35)	_	_	_	_
\mathbf{RFT}	-0.1522(12)	-	_	_	3.0232(2)	31.6(8.4)	_
FVU	-0.1569(12)	3.0233(2)	-0.0297(57)	2.29(38)	_	_	_
\mathbf{RFT}	-0.1571(10)	и v	—	_	3.0237(2)	37.6(9.0)	2789(540
FVU	-0.1521(11)	3.0205(2)	-0.0475(66)	_	_	_	_
RFT	-0.1531(13)	_	_	_	3.0212(3)	80(14)	_
FVU	-0.1549(16)	3.0205(2)	-0.0595(99)	0.93(41)	_	_	_
RFT	-0.1563(27)	-	—	_	3.0213(3)	97(16)	1773(980
FVU	-0.1444(11)	3.0184(2)	-0.1136(77)	_	_	_	_
RFT	-0.1450(17)	—	_	_	3.0199(2)	178(17)	_
FVU	-0.1464(14)	3.0183(2)	-0.1363(148)	0.84(39)	_	_	_
RFT	-0.1484(16)	—	—	_	3.0200(2)	210(23)	2227(600
t							

... same fit quality

... observables determined consistently

Pole positions

- FVU: complex energy-plane analysis¹
 -- resonance width grows ~ g²
 - -- avoided level crossing gap >> width
- Similarly from RFT with Breit-Wigner like approximation

LATTICE QCD

Lattice QCD: numerical evaluation of QCD Green's functions. But...

- discretized Euclidean space time (a>0)
- in finite volume (*L<oo*)

$\mathcal{L}_{\mathbf{QCD}} = \sum \bar{q}_f^a (i \not{D}_{ab} - m_f \delta_{ab}) q_f^b - \frac{1}{\Delta} G_{\mu\nu}^a G_a^{\mu\nu}$

