Threshold KY photoproductuion at the BGOOD experiment at ELSA

- multi-quark structures in the uds sector ?

Hartmut Schmieden Physikalisches Institut Universität Bonn

Outline

- motivation
- BGOOD experiment
- recent results
- conclusions

supported by DFG PN 50165297 and PN 405882627

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

Why look for multi-quark structures in uds secctor ?

Status N* spectroscopy

- missing resonances ?
- relevant degrees of freedom?

- 3 const. quarks unlikely
- quark diquark ??
- meson d.o.f. ?

e.g.

L.Ya. Glozman and D.O. Riska, Phys. Rep. 268 (1996) 263

C. Garcia-Recio et al., PLB 582 (2004) 49

M. Lutz, E. Kolomeitsev, PLB 585 (2004) 243

	PDG status in	
state J ^P	2010	2020(N γ)
N(1860) 5/2+	*	*
N(1875) 3/2-		**
N(1880) 1/2+		**
N(1895) 1/2-		****
N(1900) 3/2+	****	****
N(1990) 7/2+	**	**
N(2000) 5/2+	**	**
N(2060) 5/2-		***
N(2100) 1/2+	*	**
N(2120) 3/2-		***
N(2190) 7/2-	****	**
N(2220) 9/2+	****	**
N(2250) 9/2-	****	**

- inclusion of CLAS, GRAAL, MAMI, ELSA data
- confirmation of known resonances w/ improved parameters
- observation of few (!) new states

H. Schmieden

4

X(3872) ³⁰⁰ ³⁰⁰ ³⁰⁰ ⁹ ⁹

 $M(\pi^+\pi^-l^+l^-) - M(l^+l^-)$

Exotic subatomic species confirmed at Large Hadron Collider after earlier false sightings.

5

2.5 MeV/c²

Candidates per

data-fit

2.5 MeV/c²

Candidates per

data-fit

P_C⁺(4380, 4450)

Forsaken pentaguark

X(3872)

5-quark structures definitely observed

- (hidden) c-quark sector
- similar 4-quark states in meson sector
- structure/binding mechanism under debate

paradigm change in hadron physics
general feature of structure formation in QCD ?
similiar structures in (hidden) s-quark sector ??

but: – mass pattern D – D* / K – K* and – widths D* – K* different

PRL 103 (2009) 152001

meson-baryon interactions: Oset, Zou et al., PRL 105 (2010) "new N*_{cc} states are simply brothers or sisters of the well known N*(1535) and Λ *(1405) ... and many other dynamically generated states ..."

Forsaken pentaquark particle spotted at CERN

Exotic subatomic species confirmed at Large Hadron Collider after earlier false sightings.

Parallels in s-quark sector ?

Forsaken pentaquark particle spotted at CERN

Exotic subatomic species confirmed at Large Hadron Collider after earlier false sightings.

Parallels in s-quark sector ?

BGOOD experiment & selected results

H. Schmieden

located at electron accelerator Physikalisches Institut Universität Bonn

BG00D experiment

located at ELSA electron accelerator Physikalisches Institut Universität Bonn

BGOOD experiment

spokespersons: P. Levi Sandri (Frascati) & H.Schmieden (Bonn)

- combination of BGO central calorimeter & forward spectrometer
- high momentum resolution, excellent neutral & charged particle id

BGOOD experiment

BGOOD experiment

spokespersons: P. Levi Sandri (Frascati) & H.S. (Bonn)

- combination of BGO central calorimeter & forward spectrometer
- high momentum resolution, excellent neutral & charged particle id

spokespersons: P. Levi Sandri (Frascati) & H.S. (Bonn)

- combination of BGO central calorimeter & forward spectrometer
- high momentum resolution, excellent neutral & charged particle id

BGOOD experiment at ELSA

GIM

BG

 $\mathsf{O}\mathsf{D}$

17

+ p -> K⁰ + Σ⁺ anomaly @ K* threshold

R. Ewald et al. (CB/TAPS), PLB 713 (2012)

+ p -> K⁰ + Σ⁺ anomaly @ K* threshold

R. Ewald et al. (CB/TAPS), PLB 713 (2012)

19

$\delta + p \rightarrow K^0 + \Sigma^+$ anomaly @ K* threshold

$\delta + p \rightarrow K^0 + \Sigma^+$ anomaly @ K* threshold

$\delta + p \rightarrow K^0 + \Sigma^+$ anomaly @ K* threshold

 $\gamma n \rightarrow K^0 \Sigma^0$

PhD thesis K. Kohl (Bonn 2021) accepted by EPJA

C. Akondi et al. [MAMI-A2] EPJ A 55 (2019) 202 BGOOD simulated bg fit BGOOD real bg fit

see also:

"The molecular nature of some exotic hadrons" Ramos, Feijoo, Llorens, Montaña Few Body Sys. 61 (2020) 4, 34 arXiv:2009.04367 (2020)

universität**bonn**

W/ MeV

PhD thesis K. Kohl (Bonn 2021) accepted by EPJA

C. Akondi et al. [MAMI-A2] BGOOD simulated bg fit

"The molecular nature of some Ramos, Feijoo, Llorens, Few Body Sys. 61 (2020) 4, 34 arXiv:2009.04367 (2020)

universitätbonn

with the strangeness S = -1 and isospin I = 0. It is the *archetype* of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan.

PDG 2010

The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ – true 3-quark state or mere \overline{KN} threshold effect? – unambiguously in favor of the first interpretation.

PDG 2016

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S = -1 and isospin I = 0. It is the *archetype* of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan.

PDG 2010

The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ – true 3-quark state or mere \overline{KN} threshold effect? – unambiguously in favor of the first interpretation.

PDG 2016

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S = -1 and isospin I = 0. It is the *archetype* of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan.

Λ(1405) 2-pole structure in χ **PT**

Narrow pole (1410 MeV) & broad pole (~1350MeV)

taken from Maxim Mai's talk at NSTAR 2019 (Baryon ChPT)

Oller/Meißner (2001)

- Relativistic re-summation of chiral potential
- <u>Two-poles on II Riemann Sheet</u> Now part of PDG

Kaiser/Siegel/Weise (1995) Oset/Ramos (1998)

- Lippmann-Schwinger equation for K-p,Σπ,Λπ
- Potential from Chiral Lagrangian

"Thus, a potential derived from chiral dynamics with interaction ranges commensurate with the meson-baryon system necessarily produces a quasi-bound state or resonance below or near the K-p threshold"

K⁺ Λ(1405)

Λ(1405) photoproduction – line shape

G. Scheluchin *et al.* [BGOOD collab.] Phys. Lett B 833 (2022) 137375

Λ(1405) photoproduction – line shape

G. Scheluchin *et al.* [BGOOD collab.] Phys. Lett B 833 (2022) 137375

double peak strukture @ 1395 / 1425 MeV ??

H. Schmieden

photoproduction mechanism – triangle singularity

Coleman-Norton theorem, Il Nuovo Cimento 38 (1965) 438: 1, 2, 3 must be nearly on mass shell

can mimic resonance

H. Schmieden

photoproduction mechanism – triangle singularity

Coleman-Norton theorem, Il Nuovo Cimento 38 (1965) 438: 1, 2, 3 must be nearly on mass shell

can mimic resonance

or drive (dynamically generated) resonance

E. Wang, J. Xie, W. Liang, F. Guo, E. Oset, PR C 95 (2017) 015205

universitätb

28

photoproduction mechanism – triangle singularity

Coleman-Norton theorem, Il Nuovo Cimento 38 (1965) 438: 1, 2, 3 must be nearly on mass shell

can mimic resonance

K⁺ Λ(1405) – photoproduction mechanism

K⁺ Λ(1405) photoproduction – total x-sec

G. Scheluchin *et al.* [BGOOD collab.] Phys. Lett B 833 (2022) 137375

29

reminder: LHCb

$\gamma p \rightarrow K^+ \Sigma^{\theta}$ photoproduction

31

universität**bonn**

$\gamma p \rightarrow K^+ \Sigma^{\theta}$ photoproduction

T. Jude *et al.* [BGOOD collab.] Phys. Lett B 820 (2021) 136559

H. Schmieden

$\gamma p \rightarrow K^+ \Sigma^{\theta}$ photoproduction

H. Schmieden

reminder: LHCb

- multi-quark effects in uds sector observed w/ BGOOD experiment
- forward acceptance
 → meson-baryon dynamics

 @ thresholds & low t / p_T
- $\Lambda(1405)$ line shape in agreement w/ molecular $\overline{K}N$ structure
- possible [K*-Σ] configuration N*(2030) in K⁰Σ⁰ and K+Λ(1405) photoproduction (triangle singularity)
- possible [K- Σ^* (1385)] configuration in K+ Σ^0
- apparent similarity to (hidden) c-sector

a lot remains to be done, but:

meson-baryon interactions at thresholds do play a significant role in uds similar to c sector

