

Multiple Parton Scattering

from both theoretical and experimental point of views

Hua-Sheng Shao

HADRON 2023, Genova 05 June 2023

HADRON2023

erc

ar

A Brief Introduction

Cross section from factorization theorem (conjecture)

 ${\rm cross\ section} = {\rm parton\ distribution} \times {\rm partonic\ cross\ section}$

- Spectator-spectator interactions
 - cancel in inclusive cross sections (unitarity)
 - affect final state X
- Additional interaction (blue) will be sensitive if we probe X simultaneously
- If the second interaction is also hard e.g. $pp \rightarrow Z + H + X \rightarrow l\bar{l} + b\bar{b} + X$
- DPS contributes to signals and to backgrounds in many analyses at the LHC
- Inclusive cross section:

$$\sigma_{\rm SPS} \sim \frac{1}{Q^2} \quad \text{v.s.} \quad \sigma_{\rm DPS} \sim \frac{\Lambda_{\rm QCD}^2}{Q^4}$$

• Higher energy \longrightarrow Larger parton density \implies enhance DPS
 $\sigma_{\rm SPS} \propto (\text{parton density})^2 \text{ v.s. } \sigma_{\rm DPS} \propto (\text{parton density})^4$

Thursday, June 1, 23

X

A Brief Introduction

- How to probe DPS at the LHC ?
- Processes of low hard scale Q (but still in the perturbative regime)
 - multiply hadron production, e.g. $J/\psi + J/\psi$
- Processes of large yields
 - multi-jet production
- **Processes of precision measurements**
 - multi-lepton production
- Enhancement of parton luminosity
 - higher energy [8 TeV to 14 TeV to 100 TeV (FCC)]
 - probe in proton-nucleus and nucleus-nucleus collisions

[Strikman, Treleani (2002); D. d'Enterria, A. Snigirev (2013, 2014)] $\sigma_{\rm eff,pp} / \sigma_{\rm eff,pA} \approx 3A \approx 600$ $\sigma_{\rm eff,pp}/\sigma_{\rm eff,AA} \propto A^{3.3}/5 \simeq 9 \cdot 10^6$ HADRON2023

 Like SPS, we now have a first proven factorisation theorem for DPS (double Drell-Yan)

$$\sigma_{Q_1Q_2} = \frac{1}{1+\delta_{Q_1Q_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx_1' dx_2' d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d^2 \mathbf{b}_1$$

[Diehl, Gaunt, Ostermeier, Ploessl, Schafer (2015); Diehl, Nagar (2018)]

× $\Gamma_{ij}(x_1, x_2, \mathbf{b}_1, \mathbf{b}_2) \hat{\sigma}_{ik}^{Q_1}(x_1, x_1') \hat{\sigma}_{jl}^{Q_2}(x_2, x_2') \Gamma_{kl}(x_1', x_2', \mathbf{b}_1 - \mathbf{b}, \mathbf{b}_2 - \mathbf{b}),$

A NEW WAY TO ACCESS THE INFORMATION OF THE NONPERTURBATIVE STRUCTURE OF NUCLEONS

 Like SPS, we now have a first proven factorisation theorem for DPS (double Drell-Yan)

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx'_1 dx'_2 d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d^2 \mathbf{b}$$

 $\times \Gamma_{ij}(x_1, x_2, \mathbf{b}_1, \mathbf{b}_2) \hat{\sigma}_{ik}^{Q_1}(x_1, x'_1) \hat{\sigma}_{jl}^{Q_2}(x_2, x'_2) \Gamma_{kl}(x'_1, x'_2, \mathbf{b}_1 - \mathbf{b}, \mathbf{b}_2 - \mathbf{b}),$

[Diehl, Gaunt, Ostermeier, Ploessl, Schafer (2015); Diehl, Nagar (2018)]

A NEW WAY TO ACCESS THE INFORMATION OF THE NONPERTURBATIVE STRUCTURE OF NUCLEONS

 Like SPS, we now have a first proven factorisation theorem for DPS (double Drell-Yan)

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx'_1 dx'_2 d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d^2 \mathbf{b} \qquad \overline{\text{Schafer (2015); E}} \\ \times \Gamma_{ij}(x_1, x_2, \mathbf{b}_1, \mathbf{b}_2) \, \hat{\sigma}_{ik}^{Q_1}(x_1, x'_1) \, \hat{\sigma}_{jl}^{Q_2}(x_2, x'_2) \, \Gamma_{kl}(x'_1, x'_2, \mathbf{b}_1 - \mathbf{b}, \mathbf{b}_2 - \mathbf{b}),$$

[Diehl, Gaunt, Ostermeier, Ploessl, Schafer (2015); Diehl, Nagar (2018)]

dPDF

PDF

Widespread simplifications (most phenomenology relies on. Go beyond ?)

- factorization $\Gamma_{ij}(x_1, x_2, \mathbf{b}_1, \mathbf{b}_2) = D_{ij}(x_1, x_2)T_{ij}(\mathbf{b}_1, \mathbf{b}_2),$
- factorization II $D_{ij}(x_1, x_2) = f_i(x_1)f_j(x_2),$ $T_{ij}(\mathbf{b}_1, \mathbf{b}_2) = T_i(\mathbf{b}_1)T_j(\mathbf{b}_2),$
- assume flavor universality in T

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \frac{\sigma_{Q_1}\sigma_{Q_2}}{\sigma_{\text{eff}}},$$

Pocket Formula

 $\sigma_{\rm eff} = \left[\int d^2 \mathbf{b} F(\mathbf{b})^2\right]^{-1}.$

$$F(\mathbf{b}) = \int T(\mathbf{b}_i) T(\mathbf{b}_i - \mathbf{b}) d^2 \mathbf{b}_i,$$

 Like SPS, we now have a first proven factorisation theorem for DPS (double Drell-Yan)
 [Diehl, Gaunt, Ostermeier, Ploessl,

$$\sigma_{Q_1 Q_2} = \frac{1}{1 + \delta_{Q_1 Q_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx'_1 dx'_2 d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d^2 \mathbf{b}$$

 $\times \Gamma_{ij}(x_1, x_2, \mathbf{b}_1, \mathbf{b}_2) \, \hat{\sigma}_{ik}^{Q_1}(x_1, x'_1) \, \hat{\sigma}_{jl}^{Q_2}(x_2, x'_2) \, \Gamma_{kl}(x'_1, x'_2, \mathbf{b}_1 - \mathbf{b}, \mathbf{b}_2 - \mathbf{b}),$

Widespread simplifications (most phenomenology relies on. Go beyond ?)

- factorization I $\Gamma_{ij}(x_1, x_2, \mathbf{b}_1, \mathbf{b}_2) = D_{ij}(x_1, x_2)T_{ij}(\mathbf{b}_1, \mathbf{b}_2),$
- factorization II $D_{ij}(x_1, x_2) = f_i(x_1)f_j(x_2)$ $T_{ij}(\mathbf{b}_1, \mathbf{b}_2) = T_i(\mathbf{b}_1)T_j(\mathbf{b}_2),$

$$\sigma_{\rm eff} = \left[\int d^2 \mathbf{b} F(\mathbf{b})^2\right]^{-1}.$$

dPDF

PDF

$$F(\mathbf{b}) = \int T(\mathbf{b}_i) T(\mathbf{b}_i - \mathbf{b}) d^2 \mathbf{b}_i,$$

 $\sigma_{Q_1 Q_2} = \frac{1}{1 + \delta_{Q_1 Q_2}} \frac{\sigma_{Q_1} \sigma_{Q_2}}{\sigma_{\text{eff}}},$

• Even these are complex objects to treat numerically

[Gaunt, Stirling; Elias, Golec-Biernat, Stasto; Diehl, Nagar, Tackmann]

- Let us start with the pocket formula and take any deviation wrt experiment as an indication of calling for a more rigorous treatment.
- Possible deviations (a few examples):
 - dDGLAP evolution (note high x !)

- Let us start with the pocket formula and take any deviation wrt experiment as an indication of calling for a more rigorous treatment.
- Possible deviations (a few examples):
 - dDGLAP evolution (note high x !)
 - Iv2 (NLO ?) vs 2v2

[Gaunt, Stirling (2011); Block et al. (2012); Manohar, Waalewijn (2012)]

- Let us start with the pocket formula and take any deviation wrt experiment as an indication of calling for a more rigorous treatment.
- Possible deviations (a few examples):
 - dDGLAP evolution (note high x !)
 - Iv2 (NLO ?) vs 2v2
 - parton-parton correlations
 [Matteo Rinaldi @ Quarkonia As Tools
 2020; Ceccopieri, Rinaldi, Scopetta
 (2017);Cotogno, Kasemets, Myska (2020)]

the first and the last bins differ by 1 sigma.

 $\mathcal{L} = 1000~\mathrm{fb}^{-1}$

is necessary to observe correlations

Gluons 🛞 Gluons

 $\sigma_{\text{eff}} \to \sigma_{\text{eff}}(x_1, x_2, \mu_F)$

- Let us start with the pocket formula and take any deviation wrt experiment as an indication of calling for a more rigorous treatment.
- Possible deviations (a few examples):
 - dDGLAP evolution (note high x !)
 - Iv2 (NLO ?) vs 2v2
 - parton-parton correlations
- A few recent theoretical developments
 - DPS shower dShower [Cabouat, Gaunt, Ostrolenk (2019); Cabouat, Gaunt (2020)]
 - dDGLAP evolution beyond LO ChiliPDF [Diehl et al. (2023)]
 - Double parton distributions from lattice QCD [Bali et al. (2021); Zhang (2023); Jaarsma et al. (2023)]

Also see the section 7 in arXiv:2012.14161

Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

HADRON2023

• Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

- Caveats with different extractions (challenging in differ. SPS & DPS)
 - How good are we understanding/controlling SPS ?

- Many DPS measurements at the LHC (Tevatron) in pp (ppbar)
 - Caveats with different extractions (challenging in differ. SPS & DPS)
 - How good are we understanding/controlling SPS ?

- Many DPS measurements at the LHC (Tevatron) in pp (ppbar)
 - Caveats with different extractions (challenging in differ. SPS & DPS)
 - How good are we understanding/controlling SPS ?

• Many DPS measurements at the LHC (Tevatron) in pp (ppbar)

- Caveats with different extractions (challenging in differ. SPS & DPS)
 - How good are we understanding/controlling SPS ?

σ_{eff} measurements

Two novel observables

 In the rest of the talk, I will focus on two novel observables that have been firstly measured by CMS and LHCb respectively

Triple Parton Scattering in pp

DPS in heavy-ion collisions

SPS

Analogously, ignoring the parton correlations, the NPS pocket formula:

[D. d'Enterria, A. Snigirev (1708.07519)]

$$\sigma_{f_1 \cdots f_N}^{\text{NPS}} = \frac{m}{N!} \frac{\prod_{i=1}^N \sigma_{f_i}^{\text{SPS}}}{\left(\sigma_{\text{eff},N}\right)^{N-1}}$$

A pure geometric consideration leads to

$$\sigma_{\mathrm{eff},3} = (0.82 \pm 0.11) \times \sigma_{\mathrm{eff},2}$$

[D. d'Enterria, A. Snigirev (PRL'17)]

• In general, the inclusive cross sections scale as

$$\sigma_{\rm SPS} \sim \frac{1}{Q^2}$$
 v.s. $\sigma_{\rm DPS} \sim \frac{\Lambda_{\rm QCD}^2}{Q^4}$ v.s. $\sigma_{\rm TPS} \sim \frac{\Lambda_{\rm QCD}^4}{Q^6}$

• Analogously, ignoring the parton correlations, the NPS pocket formula:

[D. d'Enterria, A. Snigirev (1708.07519)]

$$\sigma_{f_1\cdots f_N}^{\text{NPS}} = \frac{m}{N!} \frac{\prod_{i=1}^N \sigma_{f_i}^{\text{SPS}}}{\left(\sigma_{\text{eff},N}\right)^{N-1}}$$

A pure geometric consideration leads to

$$\sigma_{\mathrm{eff},3} = (0.82 \pm 0.11) \times \sigma_{\mathrm{eff},2}$$

[D. d'Enterria, A. Snigirev (PRL'17)]

• In general, the inclusive cross sections scale as

$$\sigma_{\rm SPS} \sim \frac{1}{Q^2}$$
 v.s. $\sigma_{\rm DPS} \sim \frac{\Lambda_{\rm QCD}^2}{Q^4}$ v.s. $\sigma_{\rm TPS} \sim \frac{\Lambda_{\rm QCD}^4}{Q^6}$

• Any chance to see TPS at the LHC?

• Analogously, ignoring the parton correlations, the NPS pocket formula:

[D. d'Enterria, A. Snigirev (1708.07519)]

$$\sigma_{f_1\cdots f_N}^{\text{NPS}} = \frac{m}{N!} \frac{\prod_{i=1}^N \sigma_{f_i}^{\text{SPS}}}{\left(\sigma_{\text{eff},N}\right)^{N-1}}$$

A pure geometric consideration leads to

$$\sigma_{\mathrm{eff},3} = (0.82 \pm 0.11) \times \sigma_{\mathrm{eff},2}$$

[D. d'Enterria, A. Snigirev (PRL'17)]

In general, the inclusive cross sections scale as

$$\sigma_{\rm SPS} \sim \frac{1}{Q^2}$$
 v.s. $\sigma_{\rm DPS} \sim \frac{\Lambda_{\rm QCD}^2}{Q^4}$ v.s. $\sigma_{\rm TPS} \sim \frac{\Lambda_{\rm QCD}^4}{Q^6}$

• Any chance to see TPS at the LHC?

A first complete study of prompt triple J/psi as a probe of TPS

[HSS, Zhang (PRL'19)]

SPS

TPS

		inclusive	$2.0 < y_{J/\psi} < 4.5$	$ y_{J/\psi} < 2.4$
	SPS	$0.41^{+2.4}_{-0.34}\pm0.0083$	$(1.8^{+11}_{-1.5}\pm0.18)\times10^{-2}$	$(8.7^{+56}_{-7.5}\pm 0.098)\times 10^{-2}$
$13 { m TeV}$	DPS	$(190^{+501}_{-140}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(7.0^{+18}_{-5.1}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(50^{+140}_{-37}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$130 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$1.3 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$18 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	\mathbf{SPS}	$0.46^{+2.9}_{-0.39}\pm0.022$	$(3.2^{+22}_{-2.8}\pm 0.21)\times 10^{-2}$	$(5.8^{+39}_{-5.1}\pm 0.29)\times 10^{-2}$
27 TeV	DPS	$(560^{+2900}_{-480}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(19^{+97}_{-16}) imes rac{10 \text{ mb}}{\sigma_{ m eff,2}}$	$(120^{+630}_{-100}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$570 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$5.0 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$57 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	\mathbf{SPS}	$0.59^{+4.4}_{-0.52}\pm0.016$	$(3.0^{+25}_{-2.7}\pm0.23)\times10^{-2}$	$(7.2^{+63}_{-6.5}\pm0.38)\times10^{-2}$
$75 { m TeV}$	DPS	$(1900^{+11000}_{-1600}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(57^{+340}_{-50}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(310^{+2000}_{-270}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$3900 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$27 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$260 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
100 TeV	\mathbf{SPS}	$1.1^{+8.4}_{-1.0}\pm0.044$	$(4.5^{+33}_{-4.0}\pm 0.72)\times 10^{-2}$	$(36^{+290}_{-32}\pm1.8)\times10^{-2}$
	DPS	$(3400^{+19000}_{-2900}) \times \frac{10 \text{ mb}}{\sigma_{\mathrm{eff},2}}$	$(100^{+550}_{-86}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(490^{+3000}_{-430}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$6500 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$	$45 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$380 imes \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}} \right)^2$

- With our knowledge of single J/psi and double J/psi, the process is predicted to be DPS and TPS dominant
- The number of events is large enough to be seen at the LHC unless $\sigma_{\rm eff,2}$ and $\sigma_{\rm eff,3}$ are significantly larger than 10 mb

First observation by CMS at 13 TeV in pp

[CMS (Nature Physics'23)]

- Observation: 5 signal events + 1 background event
- The measurement of fiducial cross section

 $\sigma(pp \to J/\psi J/\psi J/\psi X) = 272^{+141}_{-104}(\text{stat}) \pm 17(\text{syst}) \text{ fb}$

- Theoretical interpretation of the CMS measurement
 - Using the pocket formula, we need to know the following theoretical inputs

SPS single-J/ ψ production		SPS double-J/ ψ production			SPS triple-J/ ψ production			
HO(DATA)	MG5NLO+PY8	HO(NLO*)	HO(LO)+PY8	MG5NLO+PY8	HO(LO)	HO(LO)+PY8	HO(LO)+PY8	mg5nlo+py8
$\sigma_{\rm SPS}^{\rm 1p}$	$\sigma_{\rm SPS}^{\rm 1np}$	$\sigma_{\rm SPS}^{\rm 2p}$	$\sigma_{\rm SPS}^{\rm 1p1np}$	$\sigma_{\rm SPS}^{2np}$	$\sigma_{\rm SPS}^{\rm 3p}$	$\sigma_{\rm SPS}^{\rm 2p1np}$	$\sigma_{\rm SPS}^{\rm 1p2np}$	$\sigma_{\rm SPS}^{3np}$
$570\pm57\mathrm{nb}$	$600^{+130}_{-220}\mathrm{nb}$	$40^{+80}_{-26}\mathrm{pb}$	$24^{+35}_{-16}{ m fb}$	$430^{+95}_{-130}\mathrm{pb}$	< 5 ab	$5.2^{+9.6}_{-3.3}$ fb	14^{+17}_{-8} ab	$12\pm4\mathrm{fb}$

HO: <u>HELAC-Onia</u> MG5NLO: <u>MadGraph5_aMC@NLO</u> PY8: <u>Pythia8.2</u>

• Fixing $\sigma_{\mathrm{eff},3} = (0.82 \pm 0.11) \times \sigma_{\mathrm{eff},2}$ and fitting $\sigma_{\mathrm{eff},2}$

 $\sigma_{\rm eff,2} = 2.7^{+1.4}_{-1.0} (\exp)^{+1.5}_{-1.0} (\text{theo}) \text{ mb}$

• Triple-J/psi fractions: ~6% SPS, ~74% DPS, ~20% TPS

DPS in heavy-ion collisions

Geometrical enhancement because of several nucleons in a nucleus

Assumptions: no nuclear modification and $\sigma_{\rm eff,pp} \simeq 15 \ {\rm mb}$

Geometrical enhancement because of several nucleons in a nucleus

HADRON2023

HUA-SHENG SHAO

Let us accommodate both nPDF and geometric effect [HSS (PRD'20)]

(a) Side view

(b) Beam view

• Let us accommodate both nPDF and geometric effect [HSS (PRD'20)]

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx'_1 dx'_2 d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d^2 \mathbf{b} \\ \times \Gamma_{ij}(x_1, x_2, \mathbf{b}_1, \mathbf{b}_2) \hat{\sigma}_{ik}^{Q_1}(x_1, x'_1) \hat{\sigma}_{jl}^{Q_2}(x_2, x'_2) \Gamma_{kl}(x'_1, x'_2, \mathbf{b}_1 - \mathbf{b}, \mathbf{b}_2 - \mathbf{b}),$$

$$\sigma_{AB \rightarrow f_1f_2}^{DPS} = \frac{1}{1 + \delta_{f_1f_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx'_1 dx'_2$$

$$\Gamma_A^{ij}(x_1, x_2, \vec{s}_1, \vec{s}_2, \vec{u}_1, \vec{u}_2) \hat{\sigma}_{ik}^{f_1}(x_1, x'_1) \hat{\sigma}_{jl}^{f_2}(x_2, x'_2) \times$$

$$\Gamma_B^{kl}(x'_1, x'_2, \vec{s}_1 - \vec{b} + \vec{v}_1, \vec{s}_2 - \vec{b} + \vec{v}_2, \vec{u}_1 - \vec{v}_1, \vec{u}_2 - \vec{v}_2)$$

$$d^2 \vec{u}_1 d^2 \vec{u}_2 d^2 \vec{v}_1 d^2 \vec{v}_2 d^2 \vec{s}_1 d^2 \vec{s}_2 d^2 \vec{b},$$
We also need the knowledge of nuclear nodification at different positions

$$R_k^A(x,\vec{b}) - 1 = \left(R_k^A(x) - 1\right) G\left(\frac{T_A(\vec{b})}{T_A(\vec{0})}\right) \qquad k = g, q, \bar{q}$$

(a) Side view

(b) Beam view

Ubiquitous in centrality-dependent observables

• ...but most assume
$$G\left(\frac{T_A(\vec{s})}{T_A(\vec{0})}\right) = \frac{AT_A(\vec{s})}{T_{AA}(\vec{0})}$$

• For example, considering $p \operatorname{Pb} \to D^0 D^0 X$ [HSS (PRD'20)] $R_{p\operatorname{Pb} \to D^0 + D^0}^{\operatorname{DPS}} = R_{p\operatorname{Pb}}^{D^0} R_{p\operatorname{Pb}}^{D^0} \left[\frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\operatorname{eff},pp}}{\pi R_A^2} (A-1) \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right]$ $+ \left(R_{p\operatorname{Pb}}^{D^0} + R_{p\operatorname{Pb}}^{D^0} \right) \left[1 - \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\operatorname{eff},pp}}{\pi R_A^2} (A-1) \left(\frac{3^{2-a}(a+3)^a}{2(a+4)} - \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right) \right]$ $+ \left[-1 + \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\operatorname{eff},pp}}{\pi R_A^2} (A-1) \left(\frac{9}{8} + \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} - \frac{3^{2-a}(a+3)^a}{(a+4)} \right) \right]$ $G \left(\frac{T_A(\vec{b})}{T_A(\vec{0})} \right) \propto \left(\frac{T_A(\vec{b})}{T_A(\vec{0})} \right)^a$

 $R_{pA}^{J} \equiv \frac{\sigma_{pA \to f}}{A\sigma_{max}}$

• For example, considering $p Pb \rightarrow D^0 D^0 X$ [HSS (PRD'20)] $R_{pPb \rightarrow D^0 + D^0}^{DPS} = R_{pPb}^{D^0} R_{pPb}^{D^0} \left[\frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{eff,pp}}{\pi R_A^2} (A-1) \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right]$ $+ \left(R_{pPb}^{D^0} + R_{pPb}^{D^0} \right) \left[1 - \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{eff,pp}}{\pi R_A^2} (A-1) \left(\frac{3^{2-a}(a+3)^a}{2(a+4)} - \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right) \right]$ $+ \left[-1 + \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{eff,pp}}{\pi R_A^2} (A-1) \left(\frac{9}{8} + \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} - \frac{3^{2-a}(a+3)^a}{(a+4)} \right) \right]$ $G \left(\frac{T_A(\vec{b})}{T_A(\vec{0})} \right) \propto \left(\frac{T_A(\vec{b})}{T_A(\vec{0})} \right)^a$ Either calculable or fixable by other measurements

$$R_{pA}^f \equiv \frac{\sigma_{pA \to f}}{A\sigma_{pp \to f}}$$

• For example, considering $p Pb \rightarrow D^0 D^0 X$ [HSS (PRD'20)]

 $\begin{aligned} R_{p\text{Pb}\to D^{0}+D^{0}}^{\text{DPS}} &= R_{p\text{Pb}}^{D^{0}} R_{p\text{Pb}}^{D^{0}} \left[\frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right] \\ &+ \left(R_{p\text{Pb}}^{D^{0}} + R_{p\text{Pb}}^{D^{0}} \right) \left[1 - \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \left(\frac{3^{2-a}(a+3)^{a}}{2(a+4)} - \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right) \right] \\ &+ \left[-1 + \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \left(\frac{9}{8} + \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} - \frac{3^{2-a}(a+3)^{a}}{(a+4)} \right) \right] \\ &- G\left(\frac{T_{A}(\vec{b})}{T_{A}(\vec{0})} \right) \propto \left(\frac{T_{A}(\vec{b})}{T_{A}(\vec{0})} \right)^{a} \qquad \left[\frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \simeq 5.23 \left(\frac{\sigma_{\text{eff},pp}}{34.8 \text{ mb}} \right) \right] \end{aligned}$

 $R_{pA}^{f} \equiv \frac{\sigma_{pA \to f}}{A\sigma_{pp \to f}}$

For example, considering $p Pb \rightarrow D^0 D^0 X$

R₄=6.624 fm

 $\sigma_{eff,pp}$ =15 mb

3

2

а

[HSS (PRD'20)] $R_{p\text{Pb}\to D^{0}+D^{0}}^{\text{DPS}} = R_{p\text{Pb}}^{D^{0}} R_{p\text{Pb}}^{D^{0}} \left| \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{4}^{2}} (A-1) \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right|$ $+\left(R_{p\text{Pb}}^{D^{0}}+R_{p\text{Pb}}^{D^{0}}\right)\left[1-\frac{3^{1-2a}(a+3)^{2a}}{2a+3}+\frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}}\left(A-1\right)\left(\frac{3^{2-a}(a+3)^{a}}{2(a+4)}-\frac{9^{1-a}(a+3)^{2a}}{4(a+2)}\right)\right]$ $+ \left[-1 + \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{4}^{2}} \left(A-1\right) \left(\frac{9}{8} + \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} - \frac{3^{2-a}(a+3)^{a}}{(a+4)}\right) \right]$ $G\left(\frac{T_A(\vec{b})}{T_A(\vec{0})}\right) \propto \left(\frac{T_A(\vec{b})}{T_A(\vec{0})}\right)^{-1} \qquad \left|\frac{\sigma_{\text{eff},pp}}{\pi R^2_A}\left(A-1\right) \simeq 5.23 \left(\frac{\sigma_{\text{eff},pp}}{34.8 \text{ mb}}\right)\right|$ $R_{pA}^{f} \equiv \frac{\sigma_{pA \to f}}{A\sigma_{max}}$ DPS in heavy-ion potential to constrain G() ! A=208

• First DPS measurement in heavy-ion collisions by LHCb [LHCb (PRL'20)]

- Observe ~3A enhancement in DPS wrt ~A enhancement in SPS by comparing pA vs pp xs
- The pure geometric effect cannot explain the rapidity dependence

- Theoretical interpretation of the LHCb measurement
 - J/psi+D⁰ has the sizable SPS component [HSS (PRD'20)]
 - The SPS of D⁰+D⁰ is negligible in NLO pQCD caclulations
 - The b-dependent gluon shadowing can explain the rapidity dependence

Conclusion

- LHC program offers an unprecedented avenue to study DPS & TPS.
- A lot of theoretical, phenomenological and experimental progress.
- NPS will reveal the first-ever multiple-body parton correlations in nucleon and nucleus
- Some novel observables can even tell us more (e.g. the impact parameter-dependent gluon shadowing)
- Don't be shy to attempt a 1st-ever measurement (e.g. TPS in pPb or DPS in PbPb ?)

Conclusion

- LHC program offers an unprecedented avenue to study DPS & TPS.
- A lot of theoretical, phenomenological and experimental progress.
- NPS will reveal the first-ever multiple-body parton correlations in nucleon and nucleus
- Some novel observables can even tell us more (e.g. the impact parameter-dependent gluon shadowing)
- Don't be shy to attempt a 1st-ever measurement (e.g. TPS in pPb or DPS in PbPb ?)

Thank you for your attention !

Backup Slides

21

HADRON2023

• As a concrete example, let us take $pPb \rightarrow J/\psi + D^0$ [HSS (PRD'20)] $R_{pPb \rightarrow J/\psi + D^0}^{DPS} = R_{pPb}^{J/\psi} R_{pPb}^{D^0} \left[\frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_A^2} (A-1) \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right]$ $+ \left(R_{pPb}^{J/\psi} + R_{pPb}^{D^0} \right) \left[1 - \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_A^2} (A-1) \left(\frac{3^{2-a}(a+3)^a}{2(a+4)} - \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right) \right]$ $+ \left[-1 + \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_A^2} (A-1) \left(\frac{9}{8} + \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} - \frac{3^{2-a}(a+3)^a}{(a+4)} \right) \right]$ $G \left(\left(\frac{T_A(\vec{b})}{T_A(\vec{0})} \right) \propto \left(\left(\frac{T_A(\vec{b})}{T_A(\vec{0})} \right)^a \right)$

- As a concrete example, let us take $p{
m Pb}
ightarrow J/\psi + D^0$ [HSS (PRD'20)]

$$\begin{split} R_{p\text{Pb}\to J/\psi+D^{0}}^{\text{DPS}} &= R_{p\text{Pb}}^{J/\psi} R_{p\text{Pb}}^{D^{0}} \left[\frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right] \\ &+ \left(R_{p\text{Pb}}^{J/\psi} + R_{p\text{Pb}}^{D^{0}} \right) \left[1 - \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \left(\frac{3^{2-a}(a+3)^{a}}{2(a+4)} - \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right) \right] \\ &+ \left[-1 + \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \left(\frac{9}{8} + \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} - \frac{3^{2-a}(a+3)^{a}}{(a+4)} \right) \right] \\ &- G \left(\frac{T_{A}(\vec{b})}{T_{A}(\vec{0})} \right) \propto \left(\frac{T_{A}(\vec{b})}{T_{A}(\vec{0})} \right)^{a} \end{split}$$
 Either calculable or fixable by other measurements

- As a concrete example, let us take $p{ m Pb} ightarrow J/\psi + D^0$ [HSS (PRD'20)]

$$\begin{aligned} R_{p\text{Pb}\to J/\psi+D^{0}}^{\text{DPS}} &= R_{p\text{Pb}}^{J/\psi} R_{p\text{Pb}}^{D^{0}} \left[\frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right] \\ &+ \left(R_{p\text{Pb}}^{J/\psi} + R_{p\text{Pb}}^{D^{0}} \right) \left[1 - \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \left(\frac{3^{2-a}(a+3)^{a}}{2(a+4)} - \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} \right) \right] \\ &+ \left[-1 + \frac{3^{1-2a}(a+3)^{2a}}{2a+3} + \frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \left(\frac{9}{8} + \frac{9^{1-a}(a+3)^{2a}}{4(a+2)} - \frac{3^{2-a}(a+3)^{a}}{(a+4)} \right) \right] \\ &- \left[G \left(\frac{T_{A}(\vec{b})}{T_{A}(\vec{0})} \right) \propto \left(\frac{T_{A}(\vec{b})}{T_{A}(\vec{0})} \right)^{a} \qquad \left[\frac{\sigma_{\text{eff},pp}}{\pi R_{A}^{2}} (A-1) \simeq 5.23 \left(\frac{\sigma_{\text{eff},pp}}{34.8 \text{ mb}} \right) \right] \end{aligned}$$

HADRON2023