

Funded by

DFG

Deutsche Forschungsgemeinschaft German Research Foundation

Recent and ongoing studies from the A2 Collaboration at MAMI

Hadron Conference 2023

Edoardo Mornacchi

Johannes Gutenberg University of Mainz

Genova, June 6th 2023

scattering:

Study of the nucleon structure and properties

Baryon spectroscopy

Sum rules

Fundamental relations between photon absorption and scattering:

- $GDH^* = \frac{1}{2\pi^2} \int_0^\infty d\nu \frac{(\sigma_P(\nu) \sigma_A(\nu))}{\nu} = \frac{\alpha}{M^2}$
- Baldin

$$\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_0^\infty d\nu$$

• GGT*

$$\gamma_0 = \frac{1}{4\pi^2} \int_0^\infty d\nu \frac{(\sigma_P(\nu) - \sigma_A(\nu))}{\nu^3}$$

Compton scattering

* Gerasimov-Drell-Hearn

* Gell-Mann, Goldberger, and Thirring

A2

- 4-stage microtron
- Continuous polarized or unpolarized electron beam
- $I_{e^-}^{\max} = 20 \ \mu A \text{ or } 100 \ \mu A \text{ (pol/unpol)}$
- + Linac & 3 RTMs (MAMI B) ightarrow 883 MeV
- \cdot HDSM (MAMI C) \rightarrow 1604 MeV

A2

- 4-stage microtron
- Continuous polarized or unpolarized electron beam
- $I_{e^-}^{\max} = 20 \ \mu A \text{ or } 100 \ \mu A \text{ (pol/unpol)}$
- + Linac & 3 RTMs (MAMI B) ightarrow 883 MeV
- \cdot HDSM (MAMI C) \rightarrow 1604 MeV

A2 setup

Photon tagging system

Tagger

A2 setup

Target

Unpolarized target:

- Liquid hydrogen target (LH₂)
- 10 cm long cell
- T = 20 K

Target

Unpolarized target:

- Liquid hydrogen target (LH₂)
- 10 cm long cell
- T = 20 K

Polarized target:

- Butanol (C₄H₉OH)
- 2 cm long cell
- T = 25 mK
- Polarization > 90%
- Relaxation time > 1000 h

Detection apparatus

Multiwire Proportional Chambers

Precise charged tracking/positioning $\sigma_\theta \sim 2^\circ$

$$\sigma_{\phi}\sim 3^{\circ}$$

CB Energy

- probe to understand pQCD
- access to the different degree of freedoms of the nucleon

- probe to understand pQCD
- · access to the different degree of freedoms of the nucleon

A good tool to access baryon resonance is $\gamma N \rightarrow \pi(\eta)N$:

- Electromagnetic (EM) vertex is fully understood
- 4 matrix elements are needed to fully describe it
- To fully disentangle and access all possible states, different observables has to be measured

Beam		Target		Recoil		Both		
		Х	у	Ζ)	<
					X'	Ζ'	X'	Ζ'
Unpolarized	σ		Т				$T_{X'}$	$T_{z'}$
Linear	Σ	Н	Р	G	$O_{X'}$	$O_{Z'}$	$L_{Z'}$	$L_{X'}$
Circular		F		Ε	$C_{X'}$	$C_{z'}$		

- probe to understand pQCD
- · access to the different degree of freedoms of the nucleon

A good tool to access baryon resonance is $\gamma N \rightarrow \pi(\eta)N$:

- Electromagnetic (EM) vertex is fully understood
- 4 matrix elements are needed to fully describe it
- To fully disentangle and access all possible states, different observables has to be measured

Beam		Т	arge	et	Red	coil	Bc	oth
		Х	у	Ζ)	<
					X'	Ζ'	X'	Ζ'
Unpolarized	σ		Т				$T_{X'}$	$T_{Z'}$
Linear	Σ	Н	Р	G	$O_{X'}$	$O_{Z'}$	$L_{z'}$	$L_{X'}$
Circular		F		Ε	$C_{X'}$	$C_{z'}$		

Measured or planned at A2

- probe to understand pQCD
- · access to the different degree of freedoms of the nucleon

A good tool to access baryon resonance is $\gamma N \rightarrow \pi(\eta)N$:

- Electromagnetic (EM) vertex is fully understood
- 4 matrix elements are needed to fully describe it
- To fully disentangle and access all possible states, different observables has to be measured

- EM iterations do not conserve isospin. One needs to measure both proton and neutron targets to access the full isospin decomposition
- Light nuclei (deuterium) are used as effective neutron target. Nuclear effects corrections needed to unambiguously extract the free-neutron information

Helicity dependent $ec{\gamma}ec{p} ightarrow p\pi^0$ cross section in the $\Delta($ 1232) region

Significant improvement both in statistics and quality compared to existing data!

The determination of the quadrupole strength E2 in the $\gamma N \rightarrow \Delta$ transition gives fundamental information on the proton structure

$$_{EM} = \frac{E_2}{M_1} = \frac{E_{1+}^{3/2}}{M_{1+}^{3/2}} = \frac{IM \left[E_{1+}^{3/2} \right]}{IM \left[M_{1+}^{3/2} \right]}$$

R

Legendre fit to $\vec{\gamma}\vec{p} \rightarrow p\pi^0$ data in the Δ (1232) region

Simultaneous measurement of double polarization E and G for $\gamma p ightarrow p \pi^0$

Elliptically polarized photons (long. pol. e⁻ + diamond) and longitudinally polarized target:

$$\frac{d\sigma}{d\Omega}(\theta,\phi) = \frac{d\sigma}{d\Omega_0}(\theta) \left[1 - \frac{\mathsf{P}_{\mathsf{lin}}\cos(2(\alpha - \phi)) - \mathsf{P}_{\mathsf{z}}(-\mathsf{P}_{\mathsf{lin}}\mathsf{G}\sin(2(\alpha - \phi)) + \mathsf{P}_{\mathsf{circ}}\mathsf{E})\right]$$

- Excellent agreement between A2 (diamond) and CBELSA/TAPS (amorphous)
- Time and cost efficient measurement possible!

Edoardo Mornacchi - JGU Mainz - Recent and ongoing studies - A2@MAMI - Baryon spectroscopy

Unpolarized $\gamma p \rightarrow n \pi^0 \pi^+$ cross section

First decomposition of all intermediate reaction states (full event-by-event kinematic reconstruction)

Precise diff. cross section also measured,

paper in preparation

Helicity dependent $\vec{\gamma}\vec{p} \rightarrow n\pi^0\pi^+$ cross section

Helicity dependent $\vec{\gamma}\vec{D} \rightarrow \gamma B(B = np \text{ or } d)$ cross section

PWA models for free p + free n

> Predicted decrease in cross-section (due to FSI) in the Δ (1232) region is not sufficient to describe data

Precise diff. cross section also measured: F. Cividini et al. [A2], EPJA 58 113 (2022)

Nuclear model (A. Fix)

- W < 1300 MeV: phase space for QF production and nucleon p > 350 MeV is very small (large nuclear effects)
- W > 1300 MeV: use data to extract free neutron properties without (significant) model dependent corrections

Precise E on proton also measured: F. Cividini et al. [A2], EPJA 58 113 (2022)

- Nuclear model (A. Fix)
- W < 1300 MeV: phase space for QF production and nucleon p > 350 MeV is very small (large nuclear effects)
- W > 1300 MeV: use data to extract free neutron properties without (significant) model dependent corrections

Precise E on proton also measured: F. Cividini et al. [A2], EPJA 58 113 (2022)

Edoardo Mornacchi - JGU Mainz - Recent and ongoing studies - A2@MAMI - Baryon spectroscopy

--- Nuclear model (A. Fix)

- W < 1300 MeV: phase space for QF production and nucleon p > 350 MeV is very small (large nuclear effects)
- W > 1300 MeV: use data to extract free neutron properties without (significant) model dependent corrections

Precise E on proton also measured: F. Cividini et al. [A2], EPJA 58 113 (2022)

Accessing hadron internal structure — measuring unpolarized and polarized Compton scattering observables:

- Clear probe to understand non-pQCD
- Gives access to structure-dependent properties:
 - + scalar polarizabilities: $\alpha_{\rm E1}$ and $\beta_{\rm M1}$
 - spin polarizabilities: $\gamma_{\text{E1E1}}, \gamma_{\text{M1M1}}, \gamma_{\text{M1E2}},$ and γ_{E1M2}

 $\gamma(k) + P(q) \rightarrow \gamma(k') + P(q')$

Accessing hadron internal structure — measuring unpolarized and polarized Compton scattering observables:

- Clear probe to understand non-pQCD
- Gives access to structure-dependent properties:
 - scalar polarizabilities: $\alpha_{\rm E1}$ and $\beta_{\rm M1}$
 - spin polarizabilities: $\gamma_{\rm E1E1},\,\gamma_{\rm M1M1},\,\gamma_{\rm M1E2},\,{\rm and}\,\,\gamma_{\rm E1M2}$

$$\gamma(k) + P(q) \rightarrow \gamma(k') + P(q')$$

Describe response of a nucleon to:

- External electric field $\vec{p} = \alpha_{E1} \times \vec{E}$
- External magnetic field $\vec{m} = \overrightarrow{\beta_{\rm M1}} \times \vec{H}$

Accessing hadron internal structure — measuring unpolarized and polarized Compton scattering observables:

- Clear probe to understand non-pQCD
- Gives access to structure-dependent properties:
 - + scalar polarizabilities: $\alpha_{ extsf{E1}}$ and $\beta_{ extsf{M1}}$
 - spin polarizabilities: $\gamma_{\text{E1E1}}, \gamma_{\text{M1M1}}, \gamma_{\text{M1E2}}, \text{and } \gamma_{\text{E1M2}}$
- Contribute to 2 γ exchange in μ H Lamb shift

$$\gamma(k) + P(q) \rightarrow \gamma(k') + P(q')$$

Compton scattering - Hamiltonian

 \cdot Zeroth order: mass (m) and electric charge (e)

$$H_{\mathrm{eff}}^{(0)} = rac{ec{\pi}^2}{2m} + e\phi$$
 (where $ec{\pi} = ec{p} - eec{\mathsf{A}}$)

• First order: anomalous magnetic moment (k)

$$H_{\text{eff}}^{(1)} = -\frac{e(1+k)}{2m}\vec{\sigma}\cdot\vec{H} - \frac{e(1+2k)}{8m^2}\vec{\sigma}\cdot\left[\vec{E}\times\vec{\pi}-\vec{\pi}\times\vec{E}\right]$$

- Second order: scalar polarizabilities $\alpha_{\rm E1}$ and $\beta_{\rm M1}$

$$H_{\rm eff}^{(2)} = -4\pi \left[\frac{1}{2} \boldsymbol{\alpha}_{\rm E1} \vec{E}^2 + \frac{1}{2} \boldsymbol{\beta}_{\rm M1} \vec{H}^2\right]$$

- Third order: spin polarizabilities $\gamma_{\rm E1E1},\,\gamma_{\rm M1M1},\,\gamma_{\rm M1E2}$ and $\gamma_{\rm E1M2}$

$$\begin{aligned} H_{\text{eff}}^{(3)} &= -4\pi \left[\frac{1}{2} \gamma_{\text{E1E1}} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{\text{M1M1}} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) \right. \\ &\left. - \gamma_{\text{M1E2}} E_{ij} \sigma_i H_j + \gamma_{\text{E1M2}} H_{ij} \sigma_i E_j \right] \end{aligned}$$

A2

Theory needed:

- Dispersion Relation (DR)
- Chiral Perturbation Theory (χ PT)

They can be used to fit Compton scattering data

Results on the beam asymmetry Σ_3

Beam asymmetry:

PARALLEL

PERPENDICULAR

X

X

 $\Sigma_3 = rac{\mathsf{d}\sigma_{\parallel} - \mathsf{d}\sigma_{\perp}}{\mathsf{d}\sigma_{\parallel} + \mathsf{d}\sigma_{\perp}}$

Results on the unpolarized cross-section

Edoardo Mornacchi - JGU Mainz - Recent and ongoing studies - A2@MAMI - Compton scattering

- Only new data used as input
- Systematic errors included as normalization factor (S) for each individual data set
- Baldin sum rule constraint added as an additional point with its error

$$\alpha_{E1} + \beta_{M1} = \int_{\omega_0}^{\infty} d\omega \frac{\sigma_{tot}(\omega)}{\omega^2} = 13.8 \pm 0.4$$

V. Olmos de León et al., Eur Phys J A **10**, 207 (2001)

- Only new data used as input
- Systematic errors included as normalization factor (S) for each individual data set
- Baldin sum rule constraint added as an additional point with its error
- Spin polarizabilities fixed to the most recent experimental evaluation
- Scalar polarizabilities always in units of 10⁻⁴ fm³

$$\chi^{2}(\mathcal{P}) = \sum_{j}^{N_{sets}} \left(\sum_{i}^{N_{pt}^{j}} \left(\frac{S_{j}O_{ij}^{exp} - O_{ij}^{thr}(\mathcal{P})}{S_{j}\Delta O_{ij}^{exp}} \right)^{2} + \left(\frac{S_{j} - 1}{\Delta S_{j}} \right)^{2} \right)$$

E. Mornacchi (A2), Phys. Rev. Lett. 128, 132503 (2022)

	HDPV	BChPT	HBChPT
α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38
Sσ	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015
χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89

$$\begin{split} \alpha_{E1} &= 10.99 \pm 0.16_{\text{stat.}} \pm 0.47_{\text{sys.}} \pm 0.17_{\gamma_{\text{S}}} \pm 0.34_{\text{mod.}} \\ \beta_{\text{M1}} &= 3.14 \pm 0.21_{\text{stat.}} \pm 0.24_{\text{sys.}} \pm 0.20_{\gamma_{\text{S}}} \pm 0.35_{\text{mod.}} \end{split}$$

E. Mornacchi (A2), Phys. Rev. Lett. 128, 132503 (2022)

	HDPV	BChPT	HBChPT
α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38
Sσ	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015
$\chi^2/{ m DOF}$	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89

- Highest precision Compton scattering data set below π -photoproduction threshold!
- Precise extraction of the scalar polarizabilities from one single data set

- Using all available datasets as input: 25 datasets, 388 data points
- All six polarizabilities are treated as free parameters
- Parametric bootstrap technique needed to include all possible sources of systematic uncertainties:

$$e_{i,j}^{(0)} \rightarrow e_{i,j}^{(b)} = (1 + \delta_{j,b})(e_{i,j}^{(0)} + r_{i,j,b}\sigma_{i,j}^{(0)})$$

- inclusion of common systematic uncertainties without any *a priori* distribution assumption
- \cdot probability distribution of the fit parameters obtained by the procedure
- uncertainties on nuisance model parameters are taken into account in the sampling procedure
- + fit p-value is provided if goodness-of-fit distribution is not given by the χ^2

Extracting all the six leading-order polarizabilities

E. Mornacchi et al., Phys. Rev. Lett. 129, 102501 (2022)

Edoardo Mornacchi - JGU Mainz - Recent and ongoing studies - A2@MAMI - Compton scattering

Extracting all the six leading-order polarizabilities

- First simultaneous & self-consistent extraction of the six static proton polarizabilities
- Errors competitive with the existing extractions obtained with constraints

E. Mornacchi et al., Phys. Rev. Lett. 129, 102501 (2022)

Conclusions

A2 Collaboration has an intensive program to study the nucleon internal structure! Photon absorption

	$p\pi^{0} \gamma p \rightarrow p\pi^{-}\pi$
25	$y \rightarrow p\eta' \rightarrow \gamma p \rightarrow p$

- High precision data measured for different final states and observables
- Simultaneous measurement of *E* and *G* thanks to elliptical polarization
- Relevant improvement to different PWAs

Conclusions

A2 Collaboration has an intensive program to study the nucleon internal structure! Photon absorption

(in the second s	p = 0.00 p = p = 0.00 p = p = 0.00 p = p = 0.00 p =
	$\gamma p \rightarrow p \eta^{*} \rightarrow \gamma p \rightarrow \eta^{*}$

Photon scattering

- High precision data measured for different final states and observables
- Simultaneous measurement of *E* and *G* thanks to elliptical polarization
- Relevant improvement to different PWAs
- Highest statistics Compton scattering data set below π -threshold published
- First concurrent extraction of the six LO proton polarizabilities
- New physics program on neutron planned in A2 with improved detector system

Many more results expected in the next few years. Stay tuned!

Conclusions

A2 Collaboration has an intensive program to study the nucleon internal structure! Photon absorption

Many more results expected in the next few years. Stay tuned!