# Hadronic contributions to the muon g-2 from lattice QCD

Mattia Bruno talk/material in collab. with Christoph Lehner



Hadron2023 20th International Conference on Hadron Spectroscopy and Structure Genova, Italy, June 5th



イロト イポト イヨト イヨト

Anomalous magnetic moment

scattering of particle mass m off external photon  $(\mu, q)$  $-ie \left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2})\right], g = 2(F_{1}(0) + F_{2}(0))$  $F_{1}(0) = 1 \rightarrow F_{2}(0) = a = (g - 2)/2$ 

#### A rich history

electron  $a_e$  measured in experiment [Kusch, Foley '48] confirms radiative corrections [Schwinger '48]  $\rightarrow$  success of QFT muon  $a_{\mu}$  measured in experiment [Columbia exp. '59] "muon is heavy electron"  $\rightarrow$  families of leptons

 $\begin{array}{l} \mbox{Back to the future} \\ \mbox{new physics contribution to } a: \ (a-a^{\rm SM}) \propto m^2/\Lambda_{\rm NP}^2 \\ a_{\tau} \ \mbox{experimentally inaccessible, } a_{\mu} \ \mbox{most promising} \end{array}$ 







Theory error dominated by hadronic physics HVP and HLbL Hadronic Vacuum-Polarization and Light-by-Light

Precision goal for Fermilab  $\times 4$  better implies knowing HVP at 0.2-0.3 % accuracy



## HADRONIC LIGHT-BY-LIGHT Status



Consistency between lattice QCD+QED and dispersive novel update  $124.7(11.5)(9.9)\cdot10^{11}$  [RBC/UKQCD '23]



イロト イポト イヨト イヨト

## HADRONIC VACUUM POLARIZATION

#### Overview

#### [Snowmass '21]



BMW20 first complete Lattice QCD+QED calculation below 1%

Lattice QCD+QED

data-driven/dispersive

WP20: g - 2 theory initiative community White Paper  $\rightarrow$  only data-driven/dispersive used in current best estimate



### DISPERSIVE APPROACH Method

$$a_{\mu} = rac{lpha}{\pi} \int rac{ds}{s} rac{K(s,m_{\mu})}{\pi} rac{\mathrm{Im}\Pi(s)}{\pi}$$
 [Brodsky, de Rafael '68]

analyticity 
$$\hat{\Pi}(s) = \Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4m_{\pi}^2}^{\infty} dx \frac{\text{Im}\Pi(x)}{x(x-s-i\varepsilon)}$$

$$\lim_{n \to \infty} \sqrt{\left| \frac{1}{1} \right|^{2}} = \sum_{X} \left| \sqrt{\left| \frac{1}{2} \right|^{2}} = \frac{4\pi^{2}\alpha}{s} \frac{\operatorname{Im}\Pi(s)}{\pi} = \sigma_{e^{+}e^{-} \to \gamma^{\star} \to \operatorname{had}}$$

At present O(30) channels:  $\pi^0\gamma,\pi^+\pi^-,3\pi,4\pi,K^+K^-,\cdots$ 

 $K(s, m_{\mu}) \rightarrow \pi^{+}\pi^{-}$  dominates due to  $\rho$  resonance  $\pi\pi$  channel is  $\sim 70\%$  of signal and  $\sim 70\%$  of error



## DISPERSIVE APPROACH

Tensions in  $\pi^+\pi^-$  channel

Large tensions among experiments: BaBar, KLOE, now CMD3

[CMD3 2302.08834]

(日)



very difficult to combine different experiments what is the error of  $\pi\pi$  contribution to  $a_{\mu}$ ? motivates even more first-principles Lattice QCD calculations



## LATTICE FIELD THEORIES

Non-perturbative predictions

lattice spacing  $a \rightarrow \text{regulate UV}$  divergences finite size  $L \rightarrow \text{infrared regulator}$ 

Continuum theory  $a \to 0$ ,  $L \to \infty$ 

$$\label{eq:bound} \begin{split} \text{Euclidean metric} & \rightarrow & \text{Boltzman interpretation} \\ & \text{of path integral} \end{split}$$



$$\langle O \rangle = \mathcal{Z}^{-1} \int [DU] e^{-S[U]} O(U) \approx \frac{1}{N} \sum_{i=1}^{N} O[U_i]$$

Very high dimensional integral  $\rightarrow$  Monte-Carlo methods Markov Chain of gauge field configs  $U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_N$ 



# HVP FROM LATTICE Method

Vector electro-magnetic current  $j^{\gamma}_{\mu}(x) = i \sum_{\rm f} Q_{\rm f} \overline{\psi}(x) \gamma_{\mu} \psi(x)$ 

$$\begin{split} \text{Time-momentum representation} & [\text{Bernecker, Meyer, '11}] \\ G(t) &= \frac{1}{3} \sum_{k} \int d\vec{x} \, \langle j_k^{\gamma}(x) j_k^{\gamma}(0) \rangle & \langle \cdot \rangle = \text{QCD+QED exp. value} \\ a_{\mu} &= 4\alpha^2 \int_0^{\infty} dt \, w(t) \, G(t) \,, \quad w(t) \text{ muon kernel (weights)} \end{split}$$

Isospin limit: quark-conn  $\bigcirc$  ud, s, c quark-disc  $\bigcirc$  ud, s Isospin-breaking:  $O(\alpha)$   $\overset{\frown}{\smile}$  + ...  $O(m_u - m_d)$   $\overset{\frown}{\bigcirc}$  + ...

Dominant contribution (signal+noise): up-down quark-connected



## HVP FROM LATTICE

**Theoretical advances** 

Formulation isospin-breaking schemes, isosymmetric points [RM123][RBC/UKQCD 18][BMW 20][WP20][Portelli Lat22][Tantalo Lat22][...] Analytic control of finite-volume effects [Hansen, Patella '19 '20][Lehner, Meyer '20][Bijnens et al '19] Improved understanding of scaling violations [Mainz 20][Husung, Marquard, Sommer '22][Husung '23][Sommer Lat22]



## HVP FROM LATTICE Roadmap

Accuracy goal  $\leq 5 \ [\times 10^{-10}]$ 

|           | conn-ud | conn-s | conn-c | disc | QED | SIB |
|-----------|---------|--------|--------|------|-----|-----|
| $\approx$ | 650     | 53     | 14     | -11  | <10 | <10 |
| err       | 0.5%    | 5%     | 10%    | 10%  | 10% | 10% |

1. light-quark per-mille prediction from QCD in isospin limit up-down degenerate (and no QED) tune up, down, strange masses to physical values include charm dynamical effects, take  $a \rightarrow 0$  and  $L \rightarrow \infty$  disconneted HVP, strange, charm, bottom

2. per-mille prediction from Standard Model isospin-breaking must be included at  $O(\alpha), O(m_u - m_d)$ 



## EUCLIDEAN WINDOWS

#### A novel paradigm

< □ > < □ > < □ > < □ > < □ >



#### Smoothly divide integral in several parts

$$\begin{aligned} a_{\mu} &= 4\alpha^{2} \sum_{t} w_{t} \Big[ \Theta_{\rm SD}(t) + \Theta_{\rm W}(t) + \Theta_{\rm LD}(t) \Big] G(t) & [\mathsf{RBC}/\mathsf{UKQCD} \ '18] \\ \text{short-distance} \rightarrow \text{cutoff effects} \\ & \text{long-distance} \rightarrow \text{Monte-Carlo noise} \\ & \text{intermediate window: accessible today w/ current resources} \\ & \text{most collaborations precision of } 0.4 - 0.6 \ \% \end{aligned}$$

11/17

## CONTINUUM LIMIT



Different lattice collaborations = different systematic errors unique answer in continuum limit  $\rightarrow$  excellent consistency



イロト イボト イヨト イヨト

## INTERMEDIATE WINDOW

#### Status

isosymmetric intermediate window: internal lattice cross-checks



13/17

DI MILANO

## NEW PUZZLES FORMING

Comparison with data

Windows calculable starting from R(s): compare w/ Lattice QCD+QED add isospin-breaking + strange + charm + disconnected ( $206 \rightarrow 236$ )

Situation before CMD3 (see also [Aubin et al/CL/KNT 19])



## SHORT-DISTANCE WINDOW



## SUMMARY



Light-quark connected:  $a^W_\mu$ ,  $a^{SD}_\mu$ ,  $a^{LD}_\mu$ 

Strange-quark connected

Charm-quark connected

Legend:

strong agreement, only BMW20, attention needed, agreement forming



## CONCLUSIONS

イロン イロン イヨン

Achievements

- 1. HLbL remarkable work from Lattice and Dispersive
- 2.  $a^W_\mu$  (isosymmetric) remarkable agreement Lattice collaborations
- 3.  $a_{\mu}^{SD}$  (isosymmetric) agreement of two Lattice collaborations

4. disconnected, strange, charm remarkable agreement Lattice collaborations

Outlooks Lattice community:

- 1.  $a_{\mu}^{LD}$  (isosymmetric) high-priority, several results soon
- 2. isospin-breaking effects high-priority, several results soon

Outlook experimental community:

clarify tensions in  $\pi^+\pi^-$  BaBar, KLOE, CMD3, high(er)-priority

Thanks for the attention!









< □ > < □ > < □ > < □ > < □ >





\* = Workshop "The hadronic vacuum polarization from lattice QCD at high precision" Nov 2020 also preliminary results from FNAL/MILC/HPQCD



## QED CORRECTIONS



attention needed for QED, disc

VLISVENING BICOCCA

・ロト ・四ト ・ヨト ・ヨト

## SIB CORRECTIONS

DI MILAN





another result available from PQChPT [Lehner, Meyer '20]