Hadron 2023 conference, June 5-9, 2023, Genoa, Italy

Coupled-channel meson electroproduction

Michael Doering

WASHINGTON, DC

Department of Energy, DOE DE-AC05-06OR23177 & DE-SC0016582

HPC support by JSC grant *jikp07*

National Science Foundation Grant No. PHY 2012289

Degrees of freedom: Quarks or hadrons

• Resonance review [Mai 2022]

QCD at low energies

Non-perturbative dynamics

How many states are there?

What are they?

 \rightarrow rich spectrum of excited states

 \rightarrow missing resonance problem (does it exist?)

 \rightarrow 2-quark/3-quark, hadron molecules, ...

Light baryons from diquark dynamics

Quark-diquark with reduced pseudoscalar + vector diquarks: [Eichmann (2016]

Lattice QCD for excited baryons

 $m_{\pi} = 396 \text{ MeV} [\text{Edwards et al., Phys.Rev. D84 (2011)}]$

- Pioneering spectroscopic calculations
- Information on existence, width & properties of resonances requires
 - Meson-baryon interpolating operators
 - Detailed finite-volume analysis

Phenomenology of the baryon spectrum

Review by [Thiel, Afzal, Wunderlich 2022]

Dynamical coupled-channel approaches

- ANL-Osaka (former: EBAC) [Kamano et al.]
- Dubna-Mainz-Taipei model [Tiator]
- Jülich-Bonn(-Washington) [<u>Rönchen</u>]
- . . .
- Characteristics:
 - Direct fit to data (pion & photon-induced)
 - Simultaneous fit to data of different final states
 - Integral scattering equation as needed for proper treatment of three-body channels ($\pi\pi N$)

Note: Only a subclass of analysis efforts; see, e.g., Bonn-Gatchina group K-matrix approach

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{W-E_{\gamma}(q)+i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

• channels ν , μ , γ :

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$\langle L'S'p'|\mathcal{T}^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|\mathcal{V}^{IJ}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|\mathcal{V}^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{W-E_{\gamma}(q)+i\epsilon} \langle L''S''q|\mathcal{T}^{IJ}_{\gamma\nu}|LSp\rangle$$

- potentials V constructed from effective L
- s-channel diagrams: T^P
 genuine resonance states
- t- and u-channel: T^{NP}
 dynamical generation of poles
 partial waves strongly correlated
- contact terms

Three-body channels $\sigma N, \pi \Delta, \rho N$

- Resonant sub-channels
- Fit 2→2 amplitude to 2→ 2 scattering data
- Include as sub-channel in 3-body amplitude:
- 3-body unitarity: Requires, e.g.

JBW: Data base

- $\pi N \rightarrow X$: > 7,000 data points ($\pi N \rightarrow \pi N$: GW-SAID WI08 (ED solution))
- $\gamma N \rightarrow X$:

New: $\pi N \rightarrow \omega N$ [2208.03061] Upcoming data from JParc

Reaction	Observables (# data points)	p./channel
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (2927), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), C _{x'} (74), C _{z'} (26)	25,542
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (9112), Σ (403), P (7), T (144), F (144), E (129)	9,939
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
$\gamma p ightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$ (4271), P (422), Σ (280), T (127), $C_{x',z'}$ (188), $O_{x,z}$ (254)	5,542
$\gamma p ightarrow K^0 \Sigma^+$	$d\sigma/d\Omega$ (242), P (78)	320
	in total	57,027

NEW: $N \approx 85,000$ data in $\gamma^* N \rightarrow \pi N, \eta N, K \land$

New interface [https://jbw.phys.gwu.edu/]

Resonances in $K\Sigma$ photoproduction

Similarly: $K^0 \Sigma^+$

- [D. Roenchen et al. (EPJA 2022)]
- [Webpage all results]

dominant partial waves: I = 3/2

Exception: P_{13} partial wave (I = 1/2):

N(1720) 3/2 ⁺	Re E_0	-2 Im E_0	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1726	185	5.9	82
2017	1689(4)	191 (3)	0.6(0.4)	26 (58)
PDG 2021	1675 ± 15	250^{+150}_{-100}	—	—

N(1900) 3/2 ⁺	Re E_0	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1905	93	1.3	-40
2017	1923 (2)	217 (23)	10(7)	-34(74)
PDG 2021	1920 ± 20	150 ± 50	4±2	110 ± 30

drop in cross section ("cusp-like structure") due to N(1900)3/2⁺

N(1535) ½⁻	Re E_0	-2 Im E_0	(
* * **	[MeV]	[MeV]	
2022	1504(0)	74(1)	
2017	1495(2)	112(1)	
PDG 2021	1510 ± 10	130 ± 20	

New, wide dynamically generated states in J^P=3/2⁻

2022 Update in other reactions

• Beam asymmetry in η photoproduction (different W)

• N(1710)1/2+ returns with large η N and KA branching ratios

Pion and eta Electroproduction

First coupled-channel electroproduction analysis with different final states

[M. Mai et al., 2104.07312, 2111.04774]

Theory:

- Siegert's theorem manifestly fulfilled (consequence of gauge invariance)
- Watson theorem fulfilled
- Coupled-channel unitarity fulfilled
- General expansion of electroproduction kernel in Laurent series

Electroproduction reveals resonance structure

Electroproduction data base

- Data base grown over decades with recent input mostly by CLAS, MAMI.
- Far from complete: Kinematic gaps & consistency issues. Need to combine information from different (W, Q²) regions
- Need to combine information from simultaneous analysis of different final states $(\pi N/\eta N/K Y/\pi \pi N,...)$ to extract resonance helicity couplings

Fit details: Weighted vs. unweighted χ^2

- Meson production data bases are heterogeneous:
 - A few polarization measurements with large error bars (small weight in χ^2)
 - Many cross section data with smaller error bars (large weight in χ^2)
 - ... but those **few** polarization possess **great** power to discriminate solutions
- Introduce **weighted** vs.

unweighted χ^2 :

$$\chi_{\text{wt}}^{2} = \sum_{j \in \{\pi^{0}p, \pi^{+}n, \eta p\}} \frac{N_{\text{all}}}{3N_{j}} \sum_{i=1}^{N_{j}} \left(\frac{\mathcal{O}_{ji}^{\text{exp}} - \mathcal{O}_{ji}}{\Delta_{ji}^{\text{stat}} + \Delta_{ji}^{\text{syst}}} \right)^{2}. \qquad \qquad \chi_{\text{reg}}^{2} = \sum_{i=1}^{N_{\text{all}}} \left(\frac{\mathcal{O}_{i}^{\text{exp}} - \mathcal{O}_{i}}{\Delta_{i}^{\text{stat}} + \Delta_{i}^{\text{syst}}} \right)^{2}.$$

Fit Strategies (πN)

- Different fit strategies for $N \approx 85,000$ data in $\gamma^* N \rightarrow \pi N, \eta N$:
 - Sequential $S \rightarrow S+P \rightarrow S+P+D$ waves;
 - Subsets of data until full data set reached
 - Simultaneous fit all parameters (209) set to zero without any (!) guidance
 - Extend data range from $0 < Q^2 < 4~{\rm Gev^2}$ to $0 < Q^2 < 6~{\rm Gev^2}$ to check for stability

Fit	σ	L	$d\sigma_{ ho}$	$/d\Omega$	$\sigma_T +$	- $\epsilon \sigma_L$	σ	T	σ_I	LT	σ_L	T'	σ_T	$^{\Box}T$		D1	F	P_Y	ρ_I	LT	ρ_{I}	LT'	χ^2
	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\chi_{ m dof}$
\mathfrak{F}_1	_	9	65355	53229	870	418	87	88	1212	133	862	762	4400	251	4493	_	234	_	525	_	3300	10294	1.77
\mathfrak{F}_2	—	4	69472	55889	1081	619	65	78	1780	150	1225	822	4274	237	4518	_	325	_	590	_	3545	10629	1.69
\mathfrak{F}_3	—	8	66981	54979	568	388	84	95	1863	181	1201	437	3934	339	4296	_	686	—	687	_	3556	9377	1.81
\mathfrak{F}_4	—	22	63113	52616	562	378	153	107	1270	146	1198	1015	4385	218	5929	—	699	—	604	—	3548	11028	1.78
\mathfrak{F}_5	—	20	65724	53340	536	528	125	81	1507	219	1075	756	4134	230	5236	—	692	—	554	—	3580	11254	1.81
\mathfrak{F}_6	_	18	71982	58434	1075	501	29	68	1353	135	1600	1810	3935	291	5364	_	421	_	587	_	3932	11475	1.78

Structure functions $\pi^0 p$ (not fitted)

[hep-ex]

Description of Polarization Observables (πN)

 $\pi^{0}p$, Q²=1 GeV², W=1.23 GeV, ϕ =15⁰

J. J. Kelly, Phys. Rev. Lett. 95 (2005).

GW

Large Multipoles

Fit strategies 1-6 together with MAID (open dots) for the magnetic multipole of the $\Delta(1232)$ Drechsel et al., EPJA (2007) <u>0710.0306</u> [nucl-th]

Prominent multipoles are well determined

(W=1.38 GeV fixed)

5

 $\mathbf{\Delta}$

- Zero-transition (agrees with MAID)
- Extensive exploration of parameter space reveals ambiguities in PWA and reflects systematic uncertainties
- Resonance parameters to be extracted

η Production at photon point $Q^2 = 0$

[M. Mai et al., <u>PRC (2022)</u>]

η Electroproduction

[M. Mai et al., <u>PRC (2022)</u>]

•
$$\mathcal{N}_{data}^{\eta p}=1,874$$
 (only $d\sigma/d\Omega$) (84,842 in total)

- kinematic range: $0 < Q^2 < 4 \text{ GeV}^2$, 1.13 < W < 1.6 GeV
- 8 different fit strategies: 4 with standard χ^2 , 4 with weighted χ^2 to account for the smaller $N_{data}^{\eta p}$ → better data description with weighted fit strategies:

Selected fit results: $\gamma^* p \rightarrow \eta p$ at W = 1.5 GeV, $Q^2 = 1.2$ GeV². Data: Denizli et al. (CLAS) PRC 76 (2007)

Selected multipoles at W = 1535 MeV

η Multipoles: Resonances disappear at high Q^2

N(1520)

at the pole is under way

Outlook for electroproduction analysis

	Reaction	Observable	$Q^2 \; [\text{GeV}]$	W $[GeV]$	Ref.
		$\sigma_U, \sigma_{LT}, \sigma_{TT}$	1.6 - 4.6	2.0 - 3.0	[132]
	$ep \rightarrow e'p'\eta$	$\sigma_U,\sigma_{LT},\sigma_{TT}$	0.13 - 3.3	1.5 - 2.3	[137]
		$d\sigma/d\Omega$	0.25 - 1.5	1.5 - 1.86	[138]
		P_N^0	0.8 - 3.2	1.6 - 2.7	[139]
	$ep \rightarrow e' K^+ \Lambda$	$\sigma_U, \sigma_{LT}, \sigma_{TT}, \sigma_{LT'}$	1.4 - 3.9	1.6 - 2.6	[140]
		P'_x, P'_z	0.7 - 5.4	1.6 - 2.6	[141]
		$\sigma_T, \sigma_L, \sigma_{LT}, \sigma_{TT}$	0.5 - 2.8	1.6 - 2.4	[142]
		P'_x, P'_z	0.3 - 1.5	1.6 - 2.15	[143]

Table 1: Overview of ηp and $K^+\Lambda$ electroproduction data measured at CLAS for different photon virtualities Q^2 and total energy W. Based on material provided by courtesy of D. Carman (JLab) and I. Strakovsky (GW).

- Many of these (and similar) data await analysis.
- Many more data to emerge at Jlab ($Q^2 = 5 12 \text{ Ge}v^2$)

e.g.: Carman, Joo, Mokeev, Few Body Syst. 61, 29 (2020)

- Approved Jlab experiments to study
 - Higher-lying nucleon resonances
 - Hybrid baryons
 - High-Q² transition between nonperturbative and perturbative QCD regimes

Summary

- Juelich-Bonn-Washington/JBW model: Phenomenology of excited baryons through coupled-channels, two- and three-body dynamics; data from Jlab, ELSA, MAMI, ...
- Renewed effort to explore additional reaction channels in the last year:
 - $\gamma p \to K\Sigma$
 - $\pi N \rightarrow \omega N$
 - $\gamma^* p \rightarrow \pi N, \eta N$ (Electroproduction)
- Extensive exploration of parameter space leads to *significant* variance of some multipoles. Consequence of ambiguities, incomplete kinematic coverage.
 - Many "faint" resonance signals confirmed, others not
- Many hyperon polarization data changed (α_{-} decay parameter of \wedge changed)

[D.G. Ireland et al., PRL, <u>1904.07616</u>]

• How to find a minimal resonance spectrum? Model selection.

[J. Landay et al., PRD, <u>1810.00075</u>]

• Data aspects: How to get solid statistical statements out of a heterogeneous data base dominated by systematic errors? [New experiments: Klong, Epecur,..]

(spare slides)

S-, t- and u-channel exchanges

- **21** *s*-channel states (resonances) coupling to πN , ηN , $K\Lambda$, $K\Sigma$, $\pi\Delta$, ρN .
- *t* and *u*-channel exchanges ("background"):

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	KΛ	ΚΣ
πΝ	$N,\Delta,(\pi\pi)_{\sigma},$ $(\pi\pi)_{ ho}$	N, Δ , Ct., π , ω , a_1	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	$\begin{array}{l} \Lambda, \Sigma, \Sigma^*, \\ \mathrm{K}^* \end{array}$
ρΝ		N, Δ , Ct., ρ	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	Κ*, Λ	Σ, Σ*, Κ*
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σΝ		Is there a	system		Ν, σ	-	-
KΛ		behind th	nis?			Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							Ξ, Ξ*, f ₀ , ω, φ, ρ

$2 \rightarrow 3$ and $3 \rightarrow 3$ body unitarity

• Unitarity requires certain transition amplitudes

