

Heavy-flavor Production from pp to Nucleus-nucleus Collisions

HADRON'23 - Hadrons in hot and nuclear environment June 8, 2023 Genoa, Italy

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Jing Wang (CERN)

Unique Nuclear Matter: Quark Gluon Plasma

Before collisions (two pancakes of nucleons)

Collisions (the harder, the earlier)

QGP emergence (tons of soft scatterings) Cool down while expansion 58 1 38 M

Relativistic heavy-ion collisions

Quark Gluon Plasma **Baryons** Mesons

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Hot, Dense Deconfined **Perfect fluid-like**

Hadronization

Heavy Flavors in Heavy Ion Collisions

collisions (two pancakes of nucleons) Heavy quarks as probes of Quark Gluon Plasma heavy quark arder, the earlier, $m_{HQ} \sim 1/\tau$ > emergence (tons of soft scatterings) Produced early $m_{HQ} \gg \Lambda_{QCD}$ Cool down while expansion Perturbative initial production $m_{HQ} \gg T_{QGP}$ Distinct, Diffusion HQ modified by the medium

→ "Scattering" experiment

Yoon and Wit Busza

Suppression of D Mesons

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

How are particle spectra changed in AA?

Nuclear modification factor R_{AA} R_{AA} =1: superposition of nucleon-nucleon collisions

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}}{T_{AA}\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\mathrm{T}}} \leftarrow \mathrm{Heavy-ion}$$

Charm Quarks Lose Energy in QGP

• $D^0 R_{AA} < 1$ in wide kinematics

 Lose energy in QGP via collisions (low pT) and radiations (high p_T)

Charm Flow Signal in PbPb

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v₂ up to high p_T ~40 GeV
 - Path-length dependence of energy loss

Path-length anisotropy

Vary Medium: LHC vs. RHIC

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss
- LHC vs. RHIC
 - Similar D $v_2 \rightarrow$ despite different T & size?
 - Decisive precision at sPHENIX

Beauty Flow Signal

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss
- LHC vs. RHIC
 - Similar D $v_2 \rightarrow$ despite different T & size?
 - Eager for high precision beauty v₂ at RHIC

- PLB 807 (2020) 135595 CMS-PAS-HIN-21-008

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

J/ ψ Flow Signal

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss
- LHC vs. RHIC
 - Similar D $v_2 \rightarrow$ despite different T & size?
 - Eager for high precision beauty v₂ at RHIC
 - Hint of zero v_2 of J/ψ at RHIC

Quarkonia is a slightly different story...

JHEP 10 (2020) 141 CMS-PAS-HIN-21-008

Quarkonia: Bound States in Hot Medium

collisions (two pancakes of nucleons) Primordial quarkonia s the harder, the earliers Pemergence (tons of soft scatterings) Cool down while expansion

e S. Yoon and Wit Busza

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Naive dissociation picture of quarkonia in heavy-ion collisions Should be sensitive to thermal property of the medium

Hadroniza

CERN

Charmonia in QGP: Sequential Melting

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

 $Q\bar{Q} \rightarrow$ Bound states of quark and its anti-quark

Sequential melting → binding energy hierarchy

- Higher temperature leads to smaller R_{AA}
- Stronger suppression in central events → higher T
 *Central: large N_{part}

aker bound

Charmonia in QGP: Recombination

 $QQ \rightarrow$ Bound states of quark and its anti-quark

• Sequential melting \rightarrow binding energy hierarchy

- Higher temperature leads to smaller RAA
- Stronger suppression in central events \rightarrow higher T

Recombination

- Enhancement at low p_T in central events \rightarrow larger $\sigma_{c\bar{c}}$
- Uncorrelated QQ in QGP regenerate quarkonia

Charmonia in QGP: Recombination

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

 $QQ \rightarrow$ Bound states of quark and its anti-quark

Sequential melting \rightarrow binding energy hierarchy

- Higher temperature leads to smaller RAA
- Stronger suppression in central events \rightarrow higher T

Recombination

- Enhancement at low p_T in central events \rightarrow larger $\sigma_{c\bar{c}}$
- Significant in LHC not RHIC \rightarrow larger $\sigma_{c\bar{c}}$

Cold Nuclear Matter Effects

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

 $QQ \rightarrow$ Bound states of quark and its anti-quark

• Sequential melting \rightarrow binding energy hierarchy

- Higher temperature leads to smaller RAA
- Stronger suppression in central events \rightarrow higher T

Recombination

- Enhancement at low p_T in central events \rightarrow larger $\sigma_{c\bar{c}}$
- Significant in LHC not RHIC \rightarrow larger $\sigma_{c\bar{c}}$

Cold nuclear matter effects

- Comover breakup, nuclear absorption
- Nuclear PDF
- Initial coherent energy loss

*Not saying rapidity dependence is due to CNM

Bottomonia in QGP

- First Y(3S) observation in heavy-ion collisions!
- Sequential suppression for Y(nS)
 - Y(1S) > Y(2S) > Y(3S)
 - Much weaker recombination for beauty

PLB 822 (2021) 136579 arXiv:2205.03042 arXiv:2303.17026

Are We Happy With The Picture?

- Why are so similar Y(1S) R_{AA} at RHIC and LHC
 - Broken thermometer?
- Why R_{AA} doesn't decrease at most central events Models with regeneration still don't describe that
- Feed-down contribution not well constrained

130 (2023) 112301 arXiv:2303.17026

Revisit J/ψ Believed to be Primordial

Production from jet shower

Early production in dissociation picture

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

• J/ψ have more surrounding jet activities than (model) expected in pp

Revisit J/ ψ Believed to be Primordial

J/ψ suppression in PbPb vs. z

Dissociation + parton energy loss

Dissociation

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

- Weaker suppression for isolated J/ψ
- Parton energy loss may play a more important role than expected

 $z = p_T(J/\psi) / p_T(jet)$

Charmonium Sequential Suppression in pA

 R_{pA} vs. rapidity: J/ψ vs. $\psi(2S)$

- Initial state effects \rightarrow Suppression of J/ ψ
 - Nuclear PDF
 - Initial coherent energy loss
- Final state effects
 - → Stronger suppression of $\psi(2S)$
 - Comover breakup
 - Nuclear absorption
 - Medium?

Y(nS) Sequential Suppression in pA

CERN

- Initial state effects
 - → Suppression of Y(nS)
 - Nuclear PDF
 - Initial coherent energy loss
- Final state effects
 - → Sequential suppression
 - Comover breakup
 - Nuclear absorption
 - Medium?

An Application: Probe Structure of X(3872)

CERN

X(3872)/ ψ (2S) in Different color density environment

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

- Destroyed by interactions with comovers
- Production via recombination
- Its response in color dense environment tells the inner structures

Tightly bound, small radius Weakly bound, large radius

20-year debate of X(3872) nature

T_{cc} in High Color Density Environment

Tcc yield vs. multiplicity in pp

- Similar idea applied on another exotic T_{cc}
- No suppression in high multiplicity •
 - Different response as X(3872) to the color dense environment

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Medium is Dynamic: Initial State

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Cool down while

What is the nuclear matter like before expansion? Important input to models

Directed Flow v₁: Tilt of Medium

Directed Flow v₁: Strong EM Field

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

 Tilt → Longitudinal structure of initial energy density distribution
 Non-zero (rapidity-dependent) v₁

- Strong EM field emerges at early stage
 Decays quickly → unique chance for heavy flavors
 ⇒ Split v₁ of c and c̄ → non-zero (rapidity-dep) Δv₁
 - Difference b/w LHC and RHIC for ∆v₁
 Possibly different effect dominates

J/ ψ Polarization: Initial B Field & Rotation

- $\lambda_{\theta} > 0 \rightarrow$ Transverse polarization in the direction perpendicular to the reaction plane → connected with
 - Strong magnetic field
 - Rotation at early stage via spin-orbit coupling

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Being Hot Matters

Many interesting heavy flavor behaviors driven by existence of QGP!

QQ sequential suppression

Enhancement of baryon production

QQ Polarization

Being Hot Really Matters?

Energy loss

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

However, many of them also observed in *small* systems where no medium existence expected

> QQ sequential suppression

Enhancement of baryon production

QQ Polarization

Azimuthal Anisotropy in Small Systems

- Do we fully understand what nuclear matter environment we are looking at?
- Non-zero v₂ of charm hadrons in highmultiplicity pp and pPb collisions
 - (Maybe) Initial transverse momentum correlation in CGC framework
 - (Maybe) Small QGP medium in small systems

Story Continues in the Next Talk

(two pancakes of nucleons)

the harder, the earliers

How are hadrons produced from heavy quarks with medium existence?

Major uncertainty in phenomenological models

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

ence (tons of soft scatterings)

Cool down while expansion

Hadronization

Isabelle

Thanks for your attention!

it you

Heavy Flavors in Heavy Ion Collisions

Large mass $m_{HQ} \rightarrow Unique$ slow HP

- m_{HQ} ~ 1/τ
 - Produced early
- $m_{HQ} \gg \Lambda_{QCD}$
 - Initial production with pQCD even at low p_T
 - Different length scale structure by varying pT
- $m_{HQ} \gg T_{QGP}$
 - Seldom produced in QGP
 - Brownian motion at low pT
- $m_{HQ} \gg m_q$
 - Interact with QGP differently from light quark

Heavy quark diffusion in QGP

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Flavor Dependence of Energy Loss

- Interplay of multiple effects
- (One is) Dead cone effect
 - Radiation is suppressed inside $\theta < m/E$
 - Energy loss $\Delta E_l > \Delta E_c > \Delta E_b$

Larger energy loss -> Smaller energy loss

FPJC 78 (201<u>8) 509</u> EPJC 78 (2018) 762

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Feed-Down Effect on Y(1S)

Nuclear PDF: D & B Mesons in pPb

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

11

CERN

Nuclear PDF: D & B Mesons in pPb

- Forward:
 - Suppression consistent with 5TeV D^0 result
 - Consistent with nPDF and CGC

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

- Backward:
 - Data lower than nPDF at high $p_{\rm T}$
 - Room for additional effects in the backward rapidity

CERN

Nuclear PDF: D & B Mesons in pPb

- Experimental proxies for x and Q^2
- Forms a continuous trend over wide x coverage
- Lower than nPDF at large x_{exp} and large Q_{exp}^2

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

13

arXiv:2205.03936 + LHCb $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$ $-\frac{I}{T}$ LHCb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $-\frac{1}{2}$ ALICE $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ EPPS16rwHF nCTEQ15rwHF $67.48 < Q_{exp}^2 < 103.48 \,[\text{GeV}^2]$ $10^{-1}_{x_{exp}}$ 10^{-2} $10^{-1}_{x_{exp}} 10^{-5}$ 10^{-3} 10^{-4} 10^{-3} 10^{-2}

 $Q_{exp}^2 \equiv m_{D^0}^2 + p_{\rm T}^2$

$$x_{exp} \equiv 2 \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-y^*}$$

Azimuthal Anisotropy in pp and pA

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Quark Gluon Plasma: Being Hot Matters

Jing Wang, Newcomer's talk, CMG group meeting (May 12, 2023)

Color Superconductor

MMMMM

Net Baryon Number Density

mmm

www.ww

Almond shape before expansion

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Collective Flow in QGP

Animation

Pressure gradient mall Large

Jing Wang, Heavy Flavors in pp and AA, HADRON'23 (June 8, 2023)

Collective Flow in QGP

Pressure driven expansion

Science 298 (2002) 2179 <u>Animation</u>

Initial Geometry Fluctuations

• Study event-by-event initial shape fluctuation via higher-order v_n and multi-particle correlation

Jing Wang, Newcomer's talk, CMG group meeting (May 12, 2023)

Diffusion & Medium Response

ullet

Angular profile of D wrt jet axis

Directly see diffusion via the angle between D mesons and jet axis • Hint of D⁰ farther from jet axis in PbPb than pp

Charm diffusion

Medium response

Jing Wang, Newcomer's talk, CMG group meeting (May 12, 2023)

Heavy Quark Probe QGP Transport Property

- Diffusion coefficient D_s directly related with QGP properties, e.g. viscosity
- D_s extracted from data with phenomenological model
 - Compare to first principle calculation
- Data agrees with strong coupling •
 - Sensitive to long-range force and nonperturbative structure of QGP

Extracted from data

Strong coupling

Jing Wang, Newcomer's talk, CMG group meeting (May 12, 2023)