

Tiantian Cheng, CCNU (WuHan), GSI (Darmstadt) on behalf of the ALICE Collaboration

tiantian.cheng@cern.ch June 9th, 2023

Introduction

• The production of heavy-flavour hadrons in hadronic collisions can be described by the factorization approach:

Introduction

• The production of heavy-flavour hadrons in hadronic collisions can be described by the factorization approach:

$$\frac{d\sigma^{\rm D}}{dp_{\rm T}^{\rm D}}(p_{\rm T};\mu_{\rm F};\mu_{\rm R}) = PDF(x_1,\mu_{\rm F})PDF(x_2,\mu_{\rm F}) \otimes \frac{d\sigma^{\rm c}}{dp_{\rm T}^{\rm c}}(x_1,x_2,\mu_{\rm R},\mu_{\rm F}) \otimes D_{\rm c \rightarrow D}(z=p_{\rm D}/p_{\rm c},\mu_{\rm F})$$

$$Parton \ distribution functions \ (PDFs)$$

$$Hard \ scattering cross section \ (pQCD)$$

$$Fragmentation function (hadronization)$$

- The yield ratios of hadrons are sensitive to the **HF hadronization process**
- Measurements of Fragmentation Fraction (FF)

Introduction

• The production of heavy-flavour hadrons in hadronic collisions can be described by the factorization approach:

Charm and beauty mesons in pp collisions

- Meson-to-meson yield ratios independent of $p_{\rm T}$ and collision energies
- Good agreement with model calculations
 - NLO pQCD calculations with fragmentation functions from e⁺e⁻ and e⁻p colliders, assumed to be universal across collision systems

Charm and beauty fragmentation to mesons

- Fragmentation fraction ratios for charm and beauty mesons are compatible
- No significant dependence on energy and collision systems
 - $\circ \quad \ \ {\rm From} \ e^+e^- \ and \ e^-p \ to \ hadronic \ collisions$

arxiv:2211.14032

- Strong $p_{\rm T}$ dependence
- Ratio at low $p_{\rm T}$ much larger than predicted by string fragmentation models tuned on e⁺e⁻ data
- Ratio qualitatively described by models with further baryon junctions increasing baryon production (PYTHIA 8 with CR_BLC modes), hadronization via coalescence (Catania, QCM), or feed-down from augmented set of higher-mass charm baryons (SH+RQM)

Baryon sector: the cool kid on the block

arxiv:2211.14032

- Strong $p_{\rm T}$ dependence
- Ratio at low $p_{\rm T}$ much larger than predicted by string fragmentation models tuned on e^+e^- data
- Ratio qualitatively described by models with further baryon junctions increasing baryon production (PYTHIA 8 with CR_BLC modes), hadronization via coalescence (Catania, QCM), or feed-down from augmented set of higher-mass charm baryons (SH+RQM)

Ratio significantly higher w.r.t. e^+e^- and ep collisions

PRL 128 (2022) 012001

Baryon-to-meson yield ratios

• Large enhancement of charm-baryon production in pp collisions w.r.t. e⁺e⁻ collisions

Baryon-to-meson yield ratios

- Large enhancement of charm-baryon production in pp collisions w.r.t. e⁺e⁻ collisions
- Catania model (including hadronization via coalescence) describes better the shape of measured data

In the charm-strange sector, the enhancement is even larger

13 TeV

In the charm-strange sector,

the enhancement is even larger

Baryon-to-meson yield ratios

- Large enhancement of charm-baryon production in pp collisions w.r.t. e⁺e⁻ collisions
- Catania model (including hadronization via coalescence) describes better the shape of measured data

BR($\Omega_c^0 \rightarrow \Omega^- \pi^+$) is not measured, theoretical calculation used <u>Y.Hsiao et al. EPJC 80, 1066 (2020)</u>

better the shape of measured data

BR($\Omega_c^0 \rightarrow \Omega^- \pi^+$) is not measured, theoretical calculation used <u>Y.Hsiao et al. EPJC 80, 1066 (2020)</u>

Non-prompt R_{pA} of D^0

Nuclear modification factor

- Non-prompt $D^0 R_{pPb}$ is in agreement with measurement of B^+ from CMS
- $p_{\rm T}$ -integrated non-prompt D⁰ $R_{\rm pPb}$ agrees with the results of B⁺, and non-prompt J/ ψ from LHCb

Non-prompt R_{pA} of D^0

5.02 TeV

p−Pb collisions

Nuclear modification factor

- $p_{\rm T}$ -integrated non-prompt D⁰ $R_{\rm pPb}$ is compared with prompt D⁰ in p-Pb and Pb-Pb, as well as non-prompt D⁰ from Pb-Pb
- $D^0 R_{pPb}$ in p-Pb is consistent with 1
- Deviation from unity in Pb–Pb expected to be due to hot nuclear effects
- Study shadowing for beauty and charm

First measurement of Ξ_c^0 production in p–Pb collisions

• Higher Ξ_c^{0}/D^0 in p-Pb collisions compared to pp collisions for $p_T > 6 \text{ GeV}/c$?

Quark reCombation Mechanism (QCM)

Nuclear Modification factor

$$R_{
m p-Pb} = rac{{
m d}\sigma_{
m p-Pb}/{
m d}p_{
m T}}{
m A{\cdot}d\sigma_{
m pp}/{
m d}p_{
m T}}$$

Nuclear modification factor

- If $R_{\text{pPb}} = 1$: No modification w.r.t pp collisions
- Disentangle cold nuclear matter effect from final state effects
- $R_{\rm pPb}(\Lambda_{\rm c}^{+}) \approx R_{\rm pPb}(\Xi_{\rm c}^{0})$
- $R_{\rm pPb}(\Lambda_{\rm c}^{+}) < 1$ at low $p_{\rm T}$ and > 1 at intermediate $p_{\rm T}$, as also observed in the strange sector (<u>CMS: PRC 101, 064906</u>)
- **QCM** prediction agrees with Ξ_c^0 measurement

Total charm cross section and fragmentation fractions

- No significant system dependence for charm fragmentation fractions
- Significant baryon enhancement in pp and p–Pb w.r.t. e⁺e⁻ and e⁻p collisions

Total charm cross section and fragmentation fractions

- No significant system dependence for charm fragmentation fractions
- Significant baryon enhancement in pp and p–Pb w.r.t. e⁺e⁻ and e⁻p collisions
- Total $c\bar{c}$ production at midrapidity is ~ 30% higher than previously published results

Summary

- Heavy-flavor hadron production
 - $\circ~$ D-meson production well described using FF from e^+e^- measurements
 - \circ Large enhancement of all charm-baryon production in pp collisions w.r.t. e^+e^- collisions
- Modified hadronisation mechanisms are needed w.r.t the vacuum string fragmentation picture to describe the heavy-flavor baryon measurements
 - \circ Or additional charm baryon states should be considered

Outlook: LHC Run 3, 4 and beyond

- Larger data taking rate and upgraded TPC and ITS
 - \circ Larger data samples in Run 3 than Run 2 -
 - \circ Improved impact parameter resolution
 - \circ Lead to more precise measurements, and with an extended $$p_{\rm T}$$ reach, of the observables studied in Run 2
- Direct reconstruction of beauty mesons and baryons
- Better constraints to theoretical models of the strongly

interacting medium and hadronisation

	ITS 1	ITS 2		
Distance to interaction point (mm)	39	22		Closer to interaction point
X_0 (innermost layer) (%)	~1.14	~0.35		Lower material budget
Pixel pitch (μ m ²)	50 × 425	27 × 29		Improved granularity
Readout rate (kHz)	1	100		Faster readout
Spatial resolution $(r\varphi \times z)$ (μm^2)	11×100	5 × 5	\rightarrow	Improved resolution

Thanks for your attention

ADDITIONAL SLIDES

Doubly strange charmed baryon production

13 TeV

pp collisions

 $({
m BR} imes \Omega_{
m c}^0/{
m D}^0$

Sizeable contribution of Ω^0_{c} to charm production at LHC energies?

- The hadronization process differs in pp and e^+e^- collisions
- Largely underestimated by PYTHIA 8 Monash^[1]
 - \rightarrow Does not reproduce strangeness enhancement in pp
- PYTHIA 8 including CR-BLC^[2] is not enough to describe the measurement
- Further enhancement with a simple coalescence model (QCM^[3]) still shows a hint of underestimation
- Catania^[4] is closer to data points \rightarrow coalescence in pp?

Nuclear modification factor

- Total charm RpPb is in agreement with unity
- Goal: Study modifications also in Pb-Pb collisions

Non-prompt Λ_e^+ production in p-Pb collisions

First measurement of non-prompt baryon production in p-Pb collisions

