Progress in the Partial-Wave Analysis Methods at COMPASS

Julien Beckers and Florian Kaspar for the COMPASS Collaboration

HADRON 2023: Analysis tools

June 8th, 2023

julien.beckers@tum.de

florian.kaspar@tum.de

funded by the DFG under Germany's Excellence Strategy – EXC2094 – 390783311 and BMBF Verbundsforschung 05P21WOCC1 COMPASS

Excited Light Mesons at COMPASS

• Inelastic scattering reactions of high-energetic meson beam

- Strong interaction (Pomeron exchange) between beam meson and target proton
- Intermediate hadronic resonances X^- are created, then decay into *n*-body final state

 \rightarrow wide range of allowed (spin) quantum numbers

• Final-state particles measured

The COMPASS Experiment

Large-acceptance magnetic spectrometer @ CERN-SPS

Beam:

- Secondary hadrons (π^- , K^-) at 190 GeV/c
- produced via primary proton beam from SPS

Spectrometer:

- Liquid-hydrogen target
- Two-stage spectrometer setup around two dipole magnets SM1/2

From COMPASS Collab., The COMPASS Setup for Physics with Hadron Beams (Nucl. Instrum. Methods Phys. Res. A 779 (2014), pp. 69–115)

Excited Light Mesons at COMPASS

• Allowed quantum numbers:

 $J^{PC} = 0^{-+}, 1^{-+}, 1^{++}, \dots$

 $\rightarrow \pi_I$ and a_I resonances

• Allowed quantum numbers:

 $J^{PC} = 1^{--}, 2^{++}, 3^{--}, \dots$ from decay

Dominated by Pomeron exchange $\rightarrow a_J$ for even J

- COMPASS flagship channel: 115×10^{6} evts
- Highly selective \rightarrow search for a'_4 , a_6

Excited Light Mesons at COMPASS

HADRON 2023 | June 8th, 2023

$$I(m_X, t'; \tau_n) = \left| M_{fi} \right|^2$$

- Separate process amplitude into **partial waves**
 - Spin J and spin-projection M
 - Parity **P**, charge conjugation **C**
 - ...
 - \rightarrow Partial wave index *a*

$$I(m_X, t'; \tau_n) = \left| \sum_a T_a(m_X, t') \psi_a(m_X, \tau_n) \right|$$

- Separate process amplitude into partial waves
 → Partial wave index *a*
- Production, propagation of X^- : $T_a(m_X, t')$

$$I(m_X, t'; \tau_n) = \left| \sum_a T_a(m_X, t') \psi_a(m_X, \tau_n) \right|$$

- Separate process amplitude into partial waves
 → Partial wave index *a*
- Production, propagation of X^- : $T_a(m_X, t')$
- Decay of X^- : $\psi_a(m_X, \tau_n)$

$$I(m_X, t'; \tau_n) = \left| \sum_a T_a(m_X, t') \psi_a(m_X, \tau_n) \right|$$

- Separate process amplitude into partial waves
 → Partial wave index *a*
- Production, propagation of X^- : $T_a(m_X, t')$

Partial wave a: specific ($J^{PC}M$)

 $K_S^0 K^-$

 $\boldsymbol{\tau}_{\boldsymbol{n}} = (\boldsymbol{\theta}, \boldsymbol{\phi})$

$$I(m_X, t'; \tau_n) = \left| \sum_a T_a(m_X, t') \psi_a(m_X, \tau_n) \right|$$

- Separate process amplitude into partial waves
 → Partial wave index *a*
- Production, propagation of X^- : $T_a(m_X, t')$
- Decay of *X*⁻: via **isobar model**

$$\pi^{-}\pi^{-}\pi^{+}$$

$$I(m_X, t'; \tau_n) = \left| \sum_a T_a(m_X, t') \psi_a(m_X, \tau_n) \right|$$

- Separate process amplitude into partial waves
 → Partial wave index *a*
- Production, propagation of X^-

• Decay of X^- : via isobar model

 $\tau_n = (\theta_{GJ}, \phi_{GJ}, m_{\xi}, \theta_{HF}, \phi_{HF})$ $\psi_a = \psi_X(m_X, \theta_{GJ}, \phi_{GJ}) \cdot \psi_{\xi}(m_{\xi}, \theta_{HF}, \phi_{HF})$ Partial wave *a*: specific $(J^{PC} + \text{decay})$

 $\pi^{-}\pi^{-}\pi^{+}$

$$I(m_X, t'; \tau_n) = \left| \sum_a T_a(m_X, t') \psi_a(m_X, \tau_n) \right|$$

- Separate process amplitude into partial waves
 → Partial wave index *a*
- Production, propagation of X^-
- Decay of X^- : via isobar model
- Fit $I(m_X, t'; \tau_n)$ to data in (m_X, t') bins
 - \rightarrow parametrize T_a as step-wise functions
 - \rightarrow extract constant T_a in each bin

Partial wave a: specific (J^{PC} + decay)

Resonance-Model Fit

Second step: extract resonance parameters

- Build model for mass dep. of partial-wave amplitudes: resonant (e.g. Breit-Wigner distribution)
 + non-resonant background components
- χ^2 fit to output of partial-wave decomposition

 \rightarrow get masses and widths of parameterized resonances

Understanding the Ambiguities in the Partial-Wave Decomposition of the $K_S^0 K^-$ Final State

For any final state with **two spinless** particles ($\pi\pi$, KK, $\eta\pi$, ...):

• Decomposition of intensity into $\{T_I\}$ is not **unique** (see derivation later)

 \rightarrow Several sets of $\{T_I\}$ lead to the same $I(\theta, \phi)$ in each (m_X, t') bin

$$I(\theta,\phi) = \left| \sum_{JM} T_{JM}^{(1)} \psi_{JM}(\theta,\phi) \right|^2 = \left| \sum_{JM} T_{JM}^{(2)} \psi_{JM}(\theta,\phi) \right|^2$$

• The fit cannot distinguish between the **mathematically equivalent** solutions!

$$I(\theta,\phi) = \left| \sum_{JM} T_{JM} \psi_{JM}(\theta,\phi) \right|^2$$

Assume strong dominance of $|M| = 1^*$

- Pomeron exchange dominant $\rightarrow M \neq 0$
- Higher |*M*| suppressed

*using reflectivity basis for ψ_{JM} : doi.org/10.1103/PhysRevD.11.633

$$I(\theta,\phi) = \left|\sum_{J} T_{J} \psi_{J}(\theta,\phi)\right|^{2}$$

Assume strong dominance of $|M| = 1^*$

- Pomeron exchange dominant $\rightarrow M \neq 0$
- Higher |*M*| suppressed

*using reflectivity basis for ψ_{JM} : doi.org/10.1103/PhysRevD.11.633

$$I(\theta,\phi) = \left|\sum_{J} T_{J} \psi_{J}(\theta,\phi)\right|^{2} = \left|\sum_{J} T_{J} Y_{J}^{1}(\theta,0)\right|^{2} |\sin\phi|^{2}$$
$$a(\theta)$$

$$Y_J^1(\theta, 0) = \sum_{j=0}^{J-1} y_j \tan^{2j} \theta$$

Barrelet, Nuov Cim A 8, 331–371 (1972)

Polynomial in $tan^2 \theta$

1

$$a(\theta) = \sum_{j=0}^{J_{\max}-1} c_j(\{T_J\}) \tan^{2j}(\theta) = c(\{T_J\}) \prod_{k=1}^{J_{\max}-1} \left(\tan^2(\theta) - r_k(\{T_J\})\right)$$

$$a(\tan^2 \theta = r_k) = 0$$
root decomposition

Chung, PRD 56 7299-7316 (1997)

18/42

$$a(\theta) = c(\{T_{j}\}) \prod_{k=1}^{J_{\max}-1} (\tan^{2}(\theta) - r_{k}(\{T_{j}\}))$$

$$I(\theta, \phi) = \left| \sum_{j=0}^{J} T_{j} Y_{j}^{1}(\theta, 0) \right|^{2} |\sin \phi|^{2} \qquad \{T_{j}'\} \neq \{T_{j}\}$$

$$= \left| \sum_{j=0}^{J_{\max}-1} c_{j}(\{T_{j}\}) \tan^{2j}(\theta) \right|^{2} |\sin \phi|^{2} \qquad \{c_{j}'\}$$

$$= c^{2} \prod_{k=1}^{J_{\max}-1} |\tan^{2}(\theta) - r_{k}|^{2} |\sin \phi|^{2} = c^{2} \prod_{k=1}^{J_{\max}-1} |\tan^{2}(\theta) - r_{k}^{*}|^{2} |\sin \phi|^{2}$$

Study of the Ambiguities

- How do the ambiguous solutions look like (continuity, signals, ...)?
- What are the effects of the **partial-wave decomposition fit** on **finite data** on the ambiguities?

I. Continuous intensity model

- create an amplitude model for selected partial waves
- calculate exact ambiguities

II. Finite pseudo-data

- generate pseudo-data according to model
- perform partial-wave decomposition

- I. Continuous intensity model
- create an amplitude model for four selected partial waves
- In $1.0 < m_X < 2.5 \text{ GeV}/c^2$
- m_X -dependence by Breit-Wigner amplitudes (PDG parameters)

$$T(m_X) = \sqrt{m_X} \sqrt{\rho_2(m_X)} \cdot Ce^{i\phi} \cdot D_{BW}(m_X; M_0, \Gamma_0)$$

phase-space factor complex
$$\frac{M_0 \Gamma_0}{M_0^2 - m_X^2 - iM_0 \Gamma_0}$$

J ^{PC}	Resonances			
1	$ \rho(1450) $			
2++	$a_2(1320), a_2'(1700)$			
3	None			
4 ⁺⁺	<i>a</i> ₄ (1970)			

- I. Continuous intensity model
- create an amplitude model for four selected partial waves
- In $1.0 < m_X < 2.5 \text{ GeV}/c^2$
- m_X -dependence by Breit-Wigner amplitudes (PDG parameters)

J ^{PC}	Resonances			
1	ho(1450)			
2++	$a_2(1320), a'_2(1700)$			
3	None			
4 ⁺⁺	$a_4(1970)$			

I. Continuous intensity model

$$N_a = 3$$

- Sample points in m_X and calculate ambiguous solutions
- Ambiguous intensities are also continuous
- Not all solutions are different from each other!
- Highest-spin (4⁺⁺) intensity is invariant!

I. Continuous intensity model

$$N_a = 3$$

- Sample points in m_X and calculate ambiguous solutions
- Ambiguous intensities are also continuous
- Not all solutions are different from each other!
- Highest-spin (4⁺⁺) intensity is invariant!

I. Continuous intensity model

$$N_a = 3$$

- Sample points in m_X and calculate ambiguous solutions
- Ambiguous intensities are also continuous
- Not all solutions are different from each other!
- Highest-spin (4⁺⁺) intensity is invariant!

Study of the Ambiguities

- II. Finite pseudo-data
- reality: finite data and amplitudes unknown
- generate pseudo-data according to model (10⁵ events)
- perform a partial-wave decomposition fit
- \rightarrow 3000 attempts with random start values

J ^{PC}	Resonances			
1	ho(1450)			
2 ⁺⁺	$a_2(1320), a_2'(1700)$			
3	None			
4 ⁺⁺	$a_4(1970)$			

Partial-Wave Decomposition Fits on Pseudodata

- II. Finite pseudo-data
- 4⁺⁺ intensity is still invariant!
- Overall, amplitude values found by the fit follow the calculated distributions
- Not all solutions are found in each m_X bin
- \rightarrow PWD fit distorts the intensity distribution!

Partial-Wave Decomposition Fits on Pseudodata

- II. Finite pseudo-data
- 4⁺⁺ intensity is still invariant!
- Overall, amplitude values found by the fit follow the calculated distributions
- Not all solutions are found in each m_X bin
- \rightarrow PWD fit distorts the intensity distribution!

Partial-Wave Decomposition Fits on Pseudodata

- II. Finite pseudo-data
- 4⁺⁺ intensity is still invariant!
- Overall, amplitude values found by the fit follow the calculated distributions
- Not all solutions are found in each m_X bin
- \rightarrow PWD fit distorts the intensity distribution!

Reducing the Ambiguities

- Intensity of highest-spin wave is unaffected by ambiguities
- Including $M \ge 2 \rightarrow$ allows for additional angular structure \rightarrow resolves ambiguities
- Remove one wave with $J < J_{max} \rightarrow$ resolves ambiguities

HADRON 2023 | June 8th, 2023

Continuity Constraints for Partial-Wave Analyses

Conventional Partial-Wave Analysis

We have some knowledge about the partial-wave amplitudes $T(m_X, t')$:

- Physics should be (mostly) **continuous** in m_X and t'
- \rightarrow Solutions in neighboring bins should be similar (\rightarrow correlations between bins)
- Amplitudes should follow phase-space and production kinematics

Limitations of conventional PWA:
$$I(m_X, t'; \tau_n) = \left| \sum_{\text{waves}} T_i(m_X, t') \psi_i(m_X, \tau_n) \right|^2$$

- Binned analysis limits statistics, especially for small signals
- Continuity information is not imposed in the model
- We need to **select ("small") subset of partial waves** to include in the model
- \rightarrow important source of systematic uncertainty

Constraints for Partial-Wave Analyses

Make use of this information to stabilize partial-wave decomposition fit:

- → Replace discrete amplitudes with **smooth**, **non-parametric curves**
- → Incorporate kinematic factors
- → Include **regularization** for small amplitudes

Framework by team from the Max-Planck Institute for Astrophysics: NIFTY: "Numerical Information Field Theory"

- Provides continuous non-parametric models
- Adapt to partial-wave analysis model
- Learns smoothness and shape of the amplitude curves

This work is done in collaboration with Jakob Knollmueller (TUM / ORIGINS Excellence Cluster)

HADRON 2023 | June 8th, 2023

Verification on pseudodata:

- Generate pseudodata according to:
 - smooth model in mass
 - 81 partial waves
 - 5 resonances in selected waves
 - resonance(s) (Breit-Wigner)
 - nonres. component (broad curve)
 - Combined signal → input model
- Perform PWA fit with NIFTy model on generated dataset
 - Same set of partial waves

HADRON 2023 | June 8th, 2023

Single-Step Resonance Model Fit

We can go one step further!

In selected waves:

add resonant part

(e.g. as sum of Breit-Wigner distributions)

- use NIFTy as flexible non-res. background
- amplitude described by coherent sum

→ extract resonance parameters in a single fit

Single-Step Resonance Model Fit

Conclusion

High-precision data from COMPASS in $\pi^-\pi^-\pi^+$ and $K_S^0K^-$ allow in-depth study of a_I and π_I states

Ambiguities appear in the partial-wave decomposition of two-body states

- Ambiguous amplitudes are **continuous** and can be calculated
- PWD fit/finite data has an effect on ambiguous solutions
- Choice of included partial waves may suppress the ambiguities

NIFTy: new approach to partial-wave analysis

- Includes continuity, kinematics and regularization
- Overcomes limitations of conventional approach
- Can include resonance-model fit
- Demonstrated in Monte Carlo pseudodata studies

Outlook

We can combine both presented topics

 \rightarrow Apply NIFTy method on ambiguity problem in $K_S^0 K^-$

- Use continuity constraints to separate ambiguous solutions over entire mass range
- Improve fit quality

Partial-wave analysis using NIFTy model is being successfully applied on real data

Thank you for your attention!

BACKUP

QCD in the Resonance Region

At low energies (hadron regime): QCD not solvable perturbatively

 Theory: rely on models and effective theories, e.g. quark model (hadrons as bound states of valence quarks)

 Experimentally: precision measurements of hadronic states and search for so-called exotic states (forbidden in the quark model)

$$I(m_X, t'; \theta, \phi) = \frac{dN}{dm_X dt' d\theta d\phi} = \left| M_{fi} \right|^2$$

- Separate process amplitude into **partial waves**
 - Spin J and spin-projection M

$$J = L, M = M_L$$
$$P = C = (-1)^J$$

$$I(m_X, t'; \theta, \phi) = \frac{dN}{dm_X dt' d\theta d\phi} = \left| \sum_I T_J(m_X, t') \psi_J(\theta, \phi) \right|$$

- Separate process amplitude into **partial waves**
 - Spin J and spin-projection M
- Production, propagation and decay of X^-

 $T_{J}(m_{X}, t') = P(m_{X}, t') D(m_{X})$ $\psi_{J}(\theta, \phi) = Y_{J}^{M}(\theta, \phi)$ M = 1

- Fit $I(m_X, t'; \theta, \phi)$ to data in $(\mathbf{m}_X, \mathbf{t}')$ bins:
- Choose finite set of {*J^{PC}*}

Ambiguities in Incoherent Sectors

$$\boldsymbol{\varepsilon} = \pm \mathbf{1} \colon I(m_X, t'; \theta, \phi) = \left| \sum_{JM} T_{JM}^+(m_X, t') \, \psi_{JM}^+(\theta, \phi) \right|^2 + \left| \sum_{JM} T_{JM}^-(m_X, t') \, \psi_{JM}^-(\theta, \phi) \right|^2$$

$$a_0^- = \sum_{J=0}^{J_{max}} T_{J0}^- Y_J^0(\theta, 0) \qquad \boldsymbol{\varepsilon} = -1, M = 0$$

$$a_1^- = \sum_{J=1}^{J_{max}} T_{J1}^- Y_J^1(\theta, 0) \qquad \boldsymbol{\varepsilon} = -1, M = 1$$

$$a_1^+ = \sum_{J=1}^{J_{max}} T_{J1}^+ Y_J^1(\theta, 0) \qquad \boldsymbol{\varepsilon} = +1, M = 1$$

- $a_s^- = a_0^- + a_1^-$, then same procedure as for a single sector
- New amplitudes for $\varepsilon = +1$: $|a_1^+|^2 = |a_1^-|^2 \text{const.} \rightarrow \text{positivity requirement!}$

 $J^P M^{\epsilon} = 1^{-} 1^+$

 $\times 10^{-2}$

3

² [a.u.]

Intensity

 $\times 10^{-4}$

Intensity \mathcal{T}^2 [a.u.]

- I. Continuous intensity model
- create a model for the amplitudes in four waves
- m_X -dependence by Breit-Wigner amplitudes

2.5

2.5

 $J^P M^{\epsilon} = 2^+ 1^+$

J^P	resonance content	$m_0 \; [{\rm GeV}/c^2]$	$\Gamma_0 \; [{\rm GeV}/c^2]$	С	ϕ
1-	ho(1450)	1.465	0.400	0.0564	1.8023
2+	$a_2(1320)$	1.3181	0.1098	1	0
	$a_2(1700)$	1.698	0.265	0.1480	π
3-	None	Х	х	х	х
4+	$a_4(1970)$	1.967	0.324	0.1274	6.0072

HADRON 2023 | June 8th, 2023

julien.beckers@tum.de

HADRON 2023 | June 8th, 2023

julien.beckers@tum.de

HADRON 2023 | June 8th, 2023

Implementation: NIFTy Framework

Framework by team from the Max-Planck Institute for Astrophysics: **NIFTY**: "Numerical Information Field Theory"

• Provides continuous non-parametric models

https://ift.pages.mpcdf.de/nifty/

https://ift.pages.mpcdf.de/nifty /user/getting_started_0.html

This work is done in collaboration with Jakob Knollmueller (TUM / ORIGINS Excellence Cluster)

HADRON 2023 | June 8th, 2023

julien.beckers@tum.de

Outlook: NIFTy on KsK- pseudodata

HADRON 2023 | June 8th, 2023