Complete experiments, truncated partial-wave analyses and Bayesian inference

some slides based on work done in collaboration with:

Philipp Kroenert, Farah Afzal and Annika Thiel

cf.: [P. Kroenert et al., arXiv:2305.10367 [nucl-th].]

Yannick Wunderlich

HISKP, University of Bonn

June 08, 2023

Introduction: Baryon Spectroscopy

*) Photoproduction is a generic reaction used to study baryon resonances:

Introduction: Baryon Spectroscopy

*) Photoproduction is a generic reaction used to study baryon resonances:

*) Baryon resonances $\left(\Delta(1232)\frac{3}{2}^+, N(1440)\frac{1}{2}^+, \ldots\right)$ are <u>Fermions</u>

 \hookrightarrow Scatter particles with spin to excite systems with half-integer J

- *) '*T*-matrix' \mathcal{T}_{fi} parameterized by *N* spin-amplitudes $\{b_i, i = 1, \dots, N\}$
- *) The usual reactions under study are:
 - Pion-Nucleon (πN -) scattering: $\pi N \longrightarrow \pi N$ (2 spin-amplitudes)
 - Pion photoproduction: $\gamma N \longrightarrow \pi N$ (4 spin-amplitudes)
 - Pion electroproduction: $eN \longrightarrow e'\pi N$ (6 spin-amplitudes)
 - 2-Pion photoproduction: $\gamma N \longrightarrow \pi \pi N$ (8 spin-amplitudes)

- ...

Generic case:

Photoproduction:

- *) General meson-production reaction: $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:
 - \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
 - N: target-nucleon,
 - $\{\varphi_i\}$: one or multiple meson(s),
 - B: recoil (spin 1/2-) baryon.

Generic case:

Photoproduction:

*) General meson-production reaction:

 $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:

- \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
- N: target-nucleon,
- $\{\varphi_i\}$: one or multiple meson(s),
- B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\begin{split} \mathcal{T}_{fi} &= \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N, \\ &- \kappa_i \left(\{ p_j \}, \{ \sigma_i \} \right): \text{spin-kinem. operators,} \\ &- b_i \left(\Omega_2^{n_f} \right): \text{spin ('transversity') ampl.'s,} \\ &- \Omega_2^{n_f}: \text{ phase-space for } 2 \to n_f\text{-reaction.} \end{split}$$

Generic case:

Photoproduction:

*) General meson-production reaction:

 $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:

- \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
- N: target-nucleon,
- $\{\varphi_i\}$: one or multiple meson(s),
- B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\mathcal{T}_{fi} = \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N,$$

- $\kappa_i (\{p_j\}, \{\sigma_i\})$: spin-kinem. operators, - $b_i (\Omega_2^{n_f})$: spin ('transversity') ampl.'s, - $\Omega_2^{n_f}$: phase-space for $2 \rightarrow n_f$ -reaction.
- *) The number of amplitudes N_A is determined from *spin-multiplicities*:

 $N_{\mathcal{A}} = \boldsymbol{n}_{\mathcal{P}} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi_{1}} \dots \boldsymbol{n}_{\varphi_{\tilde{n}}} \boldsymbol{n}_{B},$

with additional factor of (1/2) in case of a $2 \rightarrow 2$ reaction (parity!)

Generic case:

Photoproduction:

- *) General meson-production reaction: $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:
 - \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
 - N: target-nucleon,
 - $\{\varphi_i\}$: one or multiple meson(s),
 - B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\mathcal{T}_{fi} = \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N,$$

- $\kappa_i (\{p_j\}, \{\sigma_i\})$: spin-kinem. operators, - $b_i (\Omega_2^{n_f})$: spin ('transversity') ampl.'s, - $\Omega_2^{n_f}$: phase-space for $2 \rightarrow n_f$ -reaction.
- *) The number of amplitudes N_A is determined from *spin-multiplicities*:

 $N_{\mathcal{A}} = \boldsymbol{n}_{\mathcal{P}} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi_{1}} \dots \boldsymbol{n}_{\varphi_{\tilde{n}}} \boldsymbol{n}_{B},$

with additional factor of (1/2) in case of a $2 \rightarrow 2$ reaction (parity!)

*) Produce one pseudoscalar meson φ : $\gamma N \rightarrow \varphi B.$

*) Then:
$$N_{\mathcal{A}} = \frac{1}{2} (\boldsymbol{n}_{\gamma} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi} \boldsymbol{n}_{B})$$

= $\frac{1}{2} (2 \times 2 \times 1 \times 2) = \underline{4}$.

*) We have:

$$\mathcal{T}_{\text{fi}} = \chi_B^{\dagger} [\kappa_1 b_1 + \kappa_2 b_2 + \kappa_3 b_3 \\ + \kappa_4 b_4] \chi_N, \text{ where:}$$

- $b_i = b_i(W, \theta)$: transversity amplitudes.

Generic case:

*) General meson-production reaction: $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:

- \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
- N: target-nucleon,
- $\{\varphi_i\}$: one or multiple meson(s),
- B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\mathcal{T}_{fi} = \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N,$$

- $\kappa_i (\{p_j\}, \{\sigma_i\})$: spin-kinem. operators, - $b_i (\Omega_2^{n_f})$: spin ('transversity') ampl.'s, - $\Omega_2^{n_f}$: phase-space for $2 \rightarrow n_f$ -reaction.
- *) The number of amplitudes N_A is determined from *spin-multiplicities*:

 $N_{\mathcal{A}} = \boldsymbol{n}_{\mathcal{P}} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi_{1}} \dots \boldsymbol{n}_{\varphi_{\tilde{n}}} \boldsymbol{n}_{B},$

with additional factor of (1/2) in case of a $2 \rightarrow 2$ reaction (parity!)

Photoproduction:

*) Produce one pseudoscalar meson φ : $\gamma N \rightarrow \varphi B.$

*) Then:
$$N_{\mathcal{A}} = \frac{1}{2} (\boldsymbol{n}_{\gamma} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi} \boldsymbol{n}_{B})$$

= $\frac{1}{2} (2 \times 2 \times 1 \times 2) = \underline{4}$.

*) We have:

$$\begin{aligned} \mathcal{T}_{fi} &= \chi_B^{\dagger} [\kappa_1 b_1 + \kappa_2 b_2 + \kappa_3 b_3 \\ &+ \kappa_4 b_4] \chi_N, \text{ where:} \\ - b_i &= b_i (W, \theta): \text{ transversity amplitudes.} \end{aligned}$$

- *) { $\kappa_1, \ldots, \kappa_4$ } are complicated, e.g.: $\kappa_1 = \frac{(\hat{q} \cdot \hat{e})}{\sqrt{2} \sin^2 \theta} \left[e^{-i\frac{\theta}{2}} \left(\hat{k} \cdot \hat{\sigma} \right) - e^{i\frac{\theta}{2}} \left(\hat{q} \cdot \hat{\sigma} \right) \right]$ $\kappa_2 = \ldots$, where:
 - \hat{k}, \hat{q} : photon- and meson momentum,
 - $\hat{\epsilon}$: γ -polarization,
 - $\hat{\boldsymbol{\sigma}} = (\sigma_x, \sigma_y, \sigma_z)^T$: Pauli-matrices,
 - W: CMS-energy,
 - θ : CMS scattering-angle.

Polarization observables

<u>Generic case:</u> Observables defined as *bilinear forms*:

 $\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j,$

for $\alpha = 1, \dots, N_{A}^{2}$. (\boldsymbol{c}^{α} : normaliz. factors)

- *) The $\tilde{\Gamma}^{\alpha}$ are a set of complete, orthogonal complex $N_{\mathcal{A}} \times N_{\mathcal{A}}$ -matrices ('Clifford algebra')
- *) The $\tilde{\Gamma}^{\alpha}$ can be decomposed into classes according to their *shape*

Polarization observables

<u>Generic case:</u> Observables defined as *bilinear forms*:

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j,$$

for $\alpha = 1, \dots, N_A^2$. (\boldsymbol{c}^{α} : normaliz. factors)

> *) The $\tilde{\Gamma}^{\alpha}$ are a set of complete, orthogonal complex $N_{\mathcal{A}} \times N_{\mathcal{A}}$ -matrices ('Clifford algebra')

*) The $\tilde{\Gamma}^{\alpha}$ can be decomposed into classes according to their *shape*

Photoproduction observable	Class
$\sigma_0 = rac{1}{2} \left(b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2 ight)$	
$-\check{\Sigma} = rac{1}{2} \left(b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2 ight)$	S
$-\check{T} = rac{1}{2} \left(- b_1 ^2 + b_2 ^2 + b_3 ^2 - b_4 ^2 ight)$	
$\check{P} = rac{1}{2} \left(- b_1 ^2 + b_2 ^2 - b_3 ^2 + b_4 ^2 ight)$	
$\mathcal{O}_{1+}^{a} = b_{1} b_{3} \sin \phi_{13} + b_{2} b_{4} \sin \phi_{24} = \operatorname{Im} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2} \right] = -\check{G}$	
$\mathcal{O}_{1-}^{a} = b_{1} b_{3} \sin \phi_{13} - b_{2} b_{4} \sin \phi_{24} = \operatorname{Im} \left[b_{3}^{*} b_{1} - b_{4}^{*} b_{2} \right] = \check{F}$	$a=\mathcal{BT}$
$\mathcal{O}_{2+}^{a} = \left b_{1} \right \left b_{3} \right \cos \phi_{13} + \left b_{2} \right \left b_{4} \right \cos \phi_{24} = \operatorname{Re} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2} \right] = -\check{E}$	
$\mathcal{O}_{2-}^{a} = b_{1} b_{3} \cos \phi_{13} - b_{2} b_{4} \cos \phi_{24} = \operatorname{Re} \left[b_{3}^{*} b_{1} - b_{4}^{*} b_{2} \right] = \check{H}$	
$\mathcal{O}_{1+}^{b} = b_1 b_4 \sin \phi_{14} + b_2 b_3 \sin \phi_{23} = \operatorname{Im} \left[b_4^* b_1 + b_3^* b_2 \right] = \check{O}_{z'}$	
$\mathcal{O}_{1-}^{b} = b_1 b_4 \sin \phi_{14} - b_2 b_3 \sin \phi_{23} = \mathrm{Im} \left[b_4^* b_1 - b_3^* b_2 \right] = -\check{C}_{x'}$	$b = \mathcal{BR}$
$\mathcal{O}_{2+}^{b} = b_{1} b_{4} \cos \phi_{14} + b_{2} b_{3} \cos \phi_{23} = \operatorname{Re} \left[b_{4}^{*} b_{1} + b_{3}^{*} b_{2}\right] = -\check{C}_{z'}$	
$\mathcal{O}_{2-}^{b} = b_1 b_4 \cos \phi_{14} - b_2 b_3 \cos \phi_{23} = \operatorname{Re} \left[b_4^* b_1 - b_3^* b_2 \right] = -\check{O}_{x'}$	
$\mathcal{O}_{1+}^{c} = b_{1} b_{2} \sin \phi_{12} + b_{3} b_{4} \sin \phi_{34} = \operatorname{Im} \left[b_{2}^{*} b_{1} + b_{4}^{*} b_{3}\right] = -\check{L}_{x'}$	
$\mathcal{O}_{1-}^{c} = b_1 b_2 \sin \phi_{12} - b_3 b_4 \sin \phi_{34} = \mathrm{Im} \left[b_2^* b_1 - b_4^* b_3 \right] = -\check{T}_{z'}$	$c = \mathcal{TR}$
$\mathcal{O}_{2+}^{c} = \left b_{1} \right \left b_{2} \right \cos \phi_{12} + \left b_{3} \right \left b_{4} \right \cos \phi_{34} = \operatorname{Re} \left[b_{2}^{*} b_{1} + b_{4}^{*} b_{3} \right] = -\check{L}_{z'}$	
$\mathcal{O}_{2-}^{c} = b_{1} b_{2} \cos \phi_{12} - b_{3} b_{4} \cos \phi_{34} = \operatorname{Re} \left[b_{2}^{*} b_{1} - b_{4}^{*} b_{3} \right] = \check{T}_{x'}$	

Polarization observables

<u> </u>		
Generic case:	Photoproduction observable	Class
bilinear forms:	$\sigma_{0} = \frac{1}{2} \left(b_{1} ^{2} + b_{2} ^{2} + b_{3} ^{2} + b_{4} ^{2} \right)$	
$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_{i}^{*} \tilde{\Gamma}_{ij}^{\alpha} b_{j},$	$-\check{\Sigma} = \tfrac{1}{2} \left(b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2 \right)$	5
	$-\check{T}=rac{1}{2}\left(- b_{1} ^{2}+ b_{2} ^{2}+ b_{3} ^{2}- b_{4} ^{2} ight)$	
for $\alpha = 1, \ldots, N_A^2$.	$\check{P} = \frac{1}{2} \left(- b_1 ^2 + b_2 ^2 - b_3 ^2 + b_4 ^2 \right)$	
(\boldsymbol{c}^{α} : normaliz. factors)	$\mathcal{O}_{1+}^{a} = b_{1} b_{3} \sin \phi_{13} + b_{2} b_{4} \sin \phi_{24} = \operatorname{Im} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2} \right] = -\check{G}$	
	$\mathcal{O}_{1-}^{a} = b_{1} b_{3} \sin \phi_{13} - b_{2} b_{4} \sin \phi_{24} = \mathrm{Im} \left[b_{3}^{*} b_{1} - b_{4}^{*} b_{2} \right] = \check{F}$	$a = \mathcal{BT}$
	$\mathcal{O}_{2+}^{a} = b_{1} b_{3} \cos \phi_{13} + b_{2} b_{4} \cos \phi_{24} = \operatorname{Re} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2} \right] = -\check{E}$	
Complete-experiment analysis ('CEA'):	$\mathcal{O}_{2-}^{a} = b_1 b_3 \cos \phi_{13} - b_2 b_4 \cos \phi_{24} = \operatorname{Re} \left[b_3^* b_1 - b_4^* b_2 \right] = \check{H}$	
	$\mathcal{O}_{1+}^{b} = b_{1} b_{4} \sin \phi_{14} + b_{2} b_{3} \sin \phi_{23} = \operatorname{Im} \left[b_{4}^{*} b_{1} + b_{3}^{*} b_{2} \right] = \check{O}_{z'}$	
Extraction of b_i from (a	$\mathcal{O}_{1-}^{b} = b_1 b_4 \sin \phi_{14} - b_2 b_3 \sin \phi_{23} = \mathrm{Im} \left[b_4^* b_1 - b_3^* b_2 \right] = -\check{C}_{x'}$	b = BR
subset of) \mathcal{O}^{lpha} 's, up to	$\mathcal{O}^{b}_{2+} = b_1 b_4 \cos \phi_{14} + b_2 b_3 \cos \phi_{23} = \operatorname{Re} \left[b_4^* b_1 + b_3^* b_2 \right] = -\check{C}_{z'}$	
one unknown overall	$\mathcal{O}_{2-}^{b} = b_1 b_4 \cos \phi_{14} - b_2 b_3 \cos \phi_{23} = \operatorname{Re} \left[b_4^* b_1 - b_3^* b_2 \right] = -\check{O}_{\chi'}$	
phase (1 phase $\phi(W, \theta)$	$\mathcal{O}_{1+}^{c} = b_{1} b_{2} \sin \phi_{12} + b_{3} b_{4} \sin \phi_{34} = \mathrm{Im} \left[b_{2}^{*} b_{1} + b_{4}^{*} b_{3} \right] = -\check{L}_{x'}$	
for all <i>b</i> _i)	$\mathcal{O}_{1-}^{c} = b_{1} b_{2} \sin \phi_{12} - b_{3} b_{4} \sin \phi_{34} = \operatorname{Im} \left[b_{2}^{*} b_{1} - b_{4}^{*} b_{3} \right] = -\check{T}_{z'}$	c = TR
	$\mathcal{O}_{2+}^{c} = b_{1} b_{2} \cos \phi_{12} + b_{3} b_{4} \cos \phi_{34} = \operatorname{Re} \left[b_{2}^{*} b_{1} + b_{4}^{*} b_{3}\right] = -\check{L}_{z'}$	
	$\mathcal{O}_{2-}^{c} = b_1 b_2 \cos \phi_{12} - b_3 b_4 \cos \phi_{34} = \operatorname{Re} \left[b_2^* b_1 - b_4^* b_3 \right] = \check{T}_{x'}$	

Truncated partial-wave analysis (TPWA)

<u>Generic case:</u> partial-wave exp. for $2 \rightarrow 2$ spin-reaction in helicity-formalism:

$$\mathcal{T}_{\mu_1\mu_2,\lambda_1\lambda_2}(s,t) = e^{i(\lambda-\mu)\phi}\sum_{j=\mathsf{max}(|\lambda|,|\mu|)}^\infty (2j+1)\mathcal{T}_{\mu,\lambda}^j(s)\,d_{\mu,\lambda}^j(heta),$$

where $\lambda := \lambda_1 - \lambda_2$, $\mu := \mu_1 - \mu_2$ and $\{b_i\} \Leftrightarrow \{H_i\} = \{\mathcal{T}_{\pm\pm,\pm\pm}\}.$

Truncated partial-wave analysis (TPWA)

<u>Generic case</u>: partial-wave exp. for $2 \rightarrow 2$ spin-reaction in helicity-formalism: $\mathcal{T}_{\mu_1\mu_2,\lambda_1\lambda_2}(s,t) = e^{i(\lambda-\mu)\phi} \sum_{j=\max(|\lambda|,|\mu|)}^{\infty} (2j+1)\mathcal{T}_{\mu,\lambda}^j(s) d_{\mu,\lambda}^j(\theta),$ where $\lambda := \lambda_1 - \lambda_2, \ \mu := \mu_1 - \mu_2$ and $\{b_i\} \Leftrightarrow \{H_i\} = \{\mathcal{T}_{\pm\pm,\pm\pm}\}.$ <u>E.g.</u>: for photoproduction $(N_{\mathcal{A}} = 4)$, one has the multipole-series $(x = \cos\theta)$: $F_1(W,\theta) = \sum_{\ell=0}^{\infty\ell_{\max}} [\ell M_{\ell+}(W) + E_{\ell+}(W)] P'_{\ell+1}(x) + [(\ell+1) M_{\ell-}(W) + E_{\ell-}(W)] P'_{\ell-1}(x),$:

$$F_{4}(W,\theta) = \sum_{\ell=2}^{\infty \ell_{\max}} \left[M_{\ell+}(W) - E_{\ell+}(W) - M_{\ell-}(W) - E_{\ell-}(W) \right] P_{\ell}^{''}(x), \text{ where } \{F_{i}\} \Leftrightarrow \{b_{i}\},$$

*) 4 $\ell_{\rm max}$ complex multipoles present in every truncation-order $\ell_{\rm max} \geq 1$:

$$\mathcal{M}_{\ell} = \{ E_{0+}, E_{1+}, M_{1+}, M_{1-}, E_{2+}, E_{2-}, \dots, M_{\ell_{\max}} \}.$$

(Generic case: $N_{\mathcal{A}} * \ell_{\max}$ waves for every order $\ell_{\max} \geq 1$.)

*) \mathcal{M}_{ℓ} determined up to 1 overall phase $\Rightarrow 8\ell_{max} - 1$ real par.'s in TPWA.

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

Complete experiments: 'measurement formulation'

A *complete experiment* is a set of measurements that is sufficient to predict all other possible experiments. For polarization experiments, this means a subset of all existing polarization observables that is capable of determining all the remaining observables. cf.: [L. Tiator, AIP Conf. Proc. **1432**, no.1, 162-167 (2012)]

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

Predict all remaining observables from determined amplitudes \checkmark

 $\Downarrow \uparrow$

Use set of 'inversion formulas', which yield unique solutions using *all* observables (\checkmark , for CEA)

Complete experiments: 'measurement formulation'

A *complete experiment* is a set of measurements that is sufficient to predict all other possible experiments. For polarization experiments, this means a subset of all existing polarization observables that is capable of determining all the remaining observables. cf.: [L. Tiator, AIP Conf. Proc. **1432**, no.1, 162-167 (2012)]

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

 $\downarrow \uparrow$

Predict all remaining observables from determined amplitudes \checkmark

Use set of 'inversion formulas', which yield unique solutions using *all* observables (\checkmark , for CEA)

Complete experiments: 'measurement formulation'

A *complete experiment* is a set of measurements that is sufficient to predict all other possible experiments. For polarization experiments, this means a subset of all existing polarization observables that is capable of determining all the remaining observables. cf.: [L. Tiator, AIP Conf. Proc. **1432**, no.1, 162-167 (2012)]

 $\hookrightarrow \exists$ solution-methods for both CEA and TPWA

Standard assumption: N_A moduli $|b_1|, \ldots, |b_{N_A}|$ fixed from N_A 'diagonal' obs.'s

<u>Standard assumption</u>: $N_{\mathcal{A}}$ moduli $|b_1|, \ldots, |b_{N_{\mathcal{A}}}|$ fixed from $N_{\mathcal{A}}$ 'diagonal' obs.'s Construct graphs: *) Every node (or vertex) \leftrightarrow one amplitude b_i , *) Every edge ' $i \rightarrow j' \leftrightarrow$ bil. product $b_j^* b_i$ (or rel. phase ϕ_{ij}), Criteria for completeness:

- (i) Connectedness of the graph removes continuous ambiguities,
- (ii) Additional conditions on appearance of graph remove discrete ambiguities.

<u>Standard assumption</u>: $N_{\mathcal{A}}$ moduli $|b_1|, \ldots, |b_{N_{\mathcal{A}}}|$ fixed from $N_{\mathcal{A}}$ 'diagonal' obs.'s Construct graphs: *) Every node (or vertex) \leftrightarrow one amplitude b_i , *) Every edge ' $i \rightarrow j' \leftrightarrow$ bil. product $b_j^* b_i$ (or rel. phase ϕ_{ij}), Criteria for completeness:

- (i) Connectedness of the graph removes continuous ambiguities,
- (ii) Additional conditions on appearance of graph remove discrete ambiguities.

```
E.g.: photoproduction (N_A = 4)

*) Moravcsik-graphs (# dashed lines

odd) [YW et al., PRC 102, 034605 (2020)]

\Leftrightarrow (over-) complete set:

\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{F}, \check{G}, \check{C}_{x'}, \check{C}_{z'}, \check{O}_{x'}, \check{O}_{z'}\}.
*) New 'directional' graphs:

[YW, PRC 104, 045203 (2021)]

\Leftrightarrow complete set:

\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}\}.
```

<u>Standard assumption</u>: $N_{\mathcal{A}}$ moduli $|b_1|, \ldots, |b_{N_{\mathcal{A}}}|$ fixed from $N_{\mathcal{A}}$ 'diagonal' obs.'s Construct graphs: *) Every node (or vertex) \leftrightarrow one amplitude b_i , *) Every edge ' $i \rightarrow j' \leftrightarrow$ bil. product $b_j^* b_i$ (or rel. phase ϕ_{ij}), Criteria for *completeness*:

- (i) Connectedness of the graph removes continuous ambiguities,
- (ii) Additional conditions on appearance of graph remove discrete ambiguities.
- <u>E.g.</u>: photoproduction ($N_A = 4$)

 $\begin{array}{l} \hookrightarrow \text{ Quite powerful solution-method; generalizes to cases of higher } N_{\mathcal{A}} \ (N_{\mathcal{A}} > 4)! \\ \hookrightarrow \underline{\text{Empirically:}} \text{ at least 2 } N_{\mathcal{A}} \text{ observables in a complete set!} \end{array}$

Clifford algebra $\left\{\tilde{\Gamma}^{\alpha}\right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^{2}} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$.

⇒ Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C **55**, 2054-2066 (1997)]

Clifford algebra $\left\{\tilde{\Gamma}^{\alpha}\right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^{2}} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$.

 \Rightarrow Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\begin{array}{l} \underline{\mathsf{E.g.:}} \ \pi \textit{N-scattering, i.e.} \ \textit{N}_{\mathcal{A}} = 2, \ \{\textit{b}_{1},\textit{b}_{2}\} \ \text{vs.} \ \textit{N}_{\mathcal{A}}^{2} = 4 \ \text{obs.'s} \ \{\sigma_{0},\check{P},\check{R},\check{A}\}; \\ \hline \sigma_{0} = \left|\textit{b}_{1}\right|^{2} + \left|\textit{b}_{2}\right|^{2}, \ \check{P} = \left|\textit{b}_{1}\right|^{2} - \left|\textit{b}_{2}\right|^{2}, \ \check{R} = -\left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \sin \phi_{21}, \ \check{A} = \left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \cos \phi_{21} \end{array}$

Clifford algebra $\left\{\tilde{\Gamma}^{\alpha}\right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^2} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$.

 \Rightarrow Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\begin{array}{l} \underline{\mathsf{E.g.:}} \ \pi \textit{N-scattering, i.e.} \ \textit{N}_{\mathcal{A}} = 2, \ \{\textit{b}_{1},\textit{b}_{2}\} \ \text{vs.} \ \textit{N}_{\mathcal{A}}^{2} = 4 \ \text{obs.'s} \ \{\sigma_{0},\check{P},\check{R},\check{A}\}; \\ \hline \sigma_{0} = |\textit{b}_{1}|^{2} + |\textit{b}_{2}|^{2}, \ \check{P} = |\textit{b}_{1}|^{2} - |\textit{b}_{2}|^{2}, \ \check{R} = -|\textit{b}_{1}| \, |\textit{b}_{2}| \sin \phi_{21}, \ \check{A} = |\textit{b}_{1}| \, |\textit{b}_{2}| \cos \phi_{21} \end{array}$

*) Graphical solution (Moravcsik):

$$1 \qquad 2 \Leftrightarrow \{\sin \phi_{21}, \cos \phi_{21}\} \Leftrightarrow \text{all 4 obs.'s needed } \checkmark$$

Clifford algebra $\left\{\tilde{\Gamma}^{\alpha}\right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^{2}} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$.

 \Rightarrow Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\begin{array}{l} \underline{\mathsf{E.g.:}} \ \pi \textit{N-scattering, i.e.} \ \textit{N}_{\mathcal{A}} = 2, \ \{\textit{b}_{1},\textit{b}_{2}\} \ \textit{vs.} \ \textit{N}_{\mathcal{A}}^{2} = 4 \ \textit{obs.'s} \ \{\sigma_{0},\check{P},\check{R},\check{A}\}; \\ \hline \sigma_{0} = \left|\textit{b}_{1}\right|^{2} + \left|\textit{b}_{2}\right|^{2}, \ \check{P} = \left|\textit{b}_{1}\right|^{2} - \left|\textit{b}_{2}\right|^{2}, \ \check{R} = -\left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \sin \phi_{21}, \ \check{A} = \left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \cos \phi_{21} \end{array}$

*) Graphical solution (Moravcsik):

 $2 \Leftrightarrow \{\sin \phi_{21}, \cos \phi_{21}\} \Leftrightarrow \text{all 4 obs.'s needed } \checkmark$

*) There exists one relevant Fierz-identity:

$$\sigma_0^2 - \check{P}^2 - \check{R}^2 - \check{A}^2 = 0$$
$$\Leftrightarrow \check{A} = \pm \sqrt{\sigma_0^2 - \check{P}^2 - \check{R}^2}, \checkmark$$

Clifford algebra $\left\{\tilde{\Gamma}^{\alpha}\right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^2} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$. \Rightarrow Use these to solve for complete experiments! ('measurement formulation')

cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\underbrace{\text{E.g.:}}_{\sigma_0} \pi N \text{-scattering, i.e. } N_{\mathcal{A}} = 2, \ \{b_1, b_2\} \text{ vs. } N_{\mathcal{A}}^2 = 4 \text{ obs.'s } \{\sigma_0, \check{P}, \check{R}, \check{A}\}; \\ \overline{\sigma_0} = |b_1|^2 + |b_2|^2, \ \check{P} = |b_1|^2 - |b_2|^2, \ \check{R} = -|b_1| |b_2| \sin \phi_{21}, \ \check{A} = |b_1| |b_2| \cos \phi_{21}$

*) Graphical solution (Moravcsik):

 $\textcircled{2} \Leftrightarrow \{\sin \phi_{21}, \cos \phi_{21}\} \Leftrightarrow \text{all 4 obs.'s needed } \checkmark$

*) There exists one relevant Fierz-identity:

$$\sigma_0^2 - \check{P}^2 - \check{R}^2 - \check{A}^2 = 0$$
$$\Leftrightarrow \check{A} = \pm \sqrt{\sigma_0^2 - \check{P}^2 - \check{R}^2}, \checkmark$$

 $\label{eq:consistent} \hookrightarrow \mbox{Consistent, but cumbersome, alternative solution-method} \\ \Rightarrow \mbox{Maybe easier to automate in the future } \dots \mbox{(?)}$

Y. Wunderlich

*) Example: photoproduction ($N_{\mathcal{A}} = 4$). Consider group $\mathcal{S} \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_s} \propto \pm |b_1|^2 \pm |b_2|^2 \pm |b_3|^2 + |b_4|^2$.

 \Rightarrow Use $t := \tan\left(\frac{\theta}{2}\right)$ and write linear factorizations (for finite ℓ_{\max}):

$$b_1\left(heta
ight) \propto rac{\exp\left(-irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}} \left(t+eta_j
ight), \; b_2\left(heta
ight) \propto rac{\exp\left(irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}} \left(t-eta_j
ight), \; \dots$$

with $4\ell_{\max}$ roots $\{\alpha_k, \beta_j\} \in \mathbb{C}$ equivalent to multipoles: $\{E_{\ell\pm}, M_{\ell\pm}\}$. [A. S. Omelaenko, Sov. J. Nucl. Phys. **34**, 406 (1981)]

*) Example: photoproduction ($N_{\mathcal{A}} = 4$). Consider group $\mathcal{S} \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_s} \propto \pm |b_1|^2 \pm |b_2|^2 \pm |b_3|^2 + |b_4|^2$.

 \Rightarrow Use $t := \tan\left(\frac{\theta}{2}\right)$ and write linear factorizations (for finite ℓ_{\max}):

$$b_1\left(heta
ight) \propto rac{\exp\left(-irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}} \left(t+eta_j
ight), \; b_2\left(heta
ight) \propto rac{\exp\left(irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}} \left(t-eta_j
ight), \; \dots$$

with $4\ell_{\max}$ roots $\{\alpha_k, \beta_j\} \in \mathbb{C}$ equivalent to multipoles: $\{E_{\ell\pm}, M_{\ell\pm}\}$. [A. S. Omelaenko, Sov. J. Nucl. Phys. **34**, 406 (1981)]

 $\,\hookrightarrow\,$ Study discrete ambiguities of group $\mathcal{S},$ generated by:

$$(t - \alpha^*)(t - \alpha) \xrightarrow{\alpha \to \alpha^*} (t - [\alpha^*]^*)(t - \alpha^*) = (t - \alpha^*)(t - \alpha).$$

*) Example: photoproduction ($N_{\mathcal{A}} = 4$). Consider group $S \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_s} \propto \pm |b_1|^2 \pm |b_2|^2 \pm |b_3|^2 + |b_4|^2$.

 \Rightarrow Use $t := \tan\left(\frac{\theta}{2}\right)$ and write linear factorizations (for finite ℓ_{\max}):

$$b_1\left(heta
ight) \propto rac{\exp\left(-irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}}\left(t+eta_j
ight), \; b_2\left(heta
ight) \propto rac{\exp\left(irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}}\left(t-eta_j
ight), \; \dots$$

with $4\ell_{\max}$ roots $\{\alpha_k, \beta_j\} \in \mathbb{C}$ equivalent to multipoles: $\{E_{\ell\pm}, M_{\ell\pm}\}$. [A. S. Omelaenko, Sov. J. Nucl. Phys. **34**, 406 (1981)]

 $\,\hookrightarrow\,$ Study discrete ambiguities of group $\mathcal{S},$ generated by:

$$(t - \alpha^*)(t - \alpha) \xrightarrow{\alpha \to \alpha^*} (t - [\alpha^*]^*)(t - \alpha^*) = (t - \alpha^*)(t - \alpha).$$

 $\Rightarrow \underline{\text{Surprise:}} \text{ all ambiguites can be resolved using less than } 2N_{\mathcal{A}} = 8 \text{ observables!} \\ [YW, R. Beck and L. Tiator PRC$ **89** $, no.5, 055203 (2014)] \\ [R. L. Workman, et al., PRC$ **95** $, no.1, 015206 (2017)] \\ [YW, arXiv:2008.00514 [nucl-th]] \end{cases}$

*) Example: photoproduction ($N_{\mathcal{A}} = 4$). Consider group $\mathcal{S} \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_S} \propto \pm |b_1|^2 \pm |b_2|^2 \pm |b_3|^2 + |b_4|^2$.

 \Rightarrow Use $t := \tan\left(\frac{\theta}{2}\right)$ and write linear factorizations (for finite ℓ_{\max}):

$$b_1\left(heta
ight) \propto rac{\exp\left(-irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}} \left(t+eta_j
ight), \; b_2\left(heta
ight) \propto rac{\exp\left(irac{ heta}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}} \left(t-eta_j
ight), \; \dots$$

with $4\ell_{\max}$ roots $\{\alpha_k, \beta_j\} \in \mathbb{C}$ equivalent to multipoles: $\{E_{\ell\pm}, M_{\ell\pm}\}$. [A. S. Omelaenko, Sov. J. Nucl. Phys. **34**, 406 (1981)]

 $\,\hookrightarrow\,$ Study discrete ambiguities of group $\mathcal S,$ generated by:

$$(t-\alpha^*)(t-\alpha) \xrightarrow{\alpha \to \alpha^*} (t-[\alpha^*]^*)(t-\alpha^*) = (t-\alpha^*)(t-\alpha).$$

<u>Comment:</u> number of *observables* needed for completeness has been reduced, but not (!) the number of *datapoints*!

Y. Wunderlich

Complete experiments, TPWAs and Bayesian inference

Ideal tool: Bayesian inference

*) Use parametric version of Bayes' Theorem:

$$\underbrace{p(\boldsymbol{\theta}|\boldsymbol{y})}_{\text{'posterior'}} = \underbrace{\frac{\overbrace{p(\boldsymbol{y}|\boldsymbol{\theta})}^{\text{'likelihood'}} \overbrace{p(\boldsymbol{\theta})}^{\text{'prior'}}}{\int d^{D}\theta p(\boldsymbol{y}|\boldsymbol{\theta}) p(\boldsymbol{\theta})}.$$

Ideal tool: Bayesian inference

*) Use *parametric version* of Bayes' Theorem:

*) We have, for either the CEA or the TPWA:

- Parameters: either $\boldsymbol{\theta} = \{b_i\}$, or $\boldsymbol{\theta} = \{E_{\ell\pm}, M_{\ell\pm}\}$,
- $\boldsymbol{y} = [\boldsymbol{y}^{\sigma_0}, \boldsymbol{y}^{\check{G}}, \dots, \boldsymbol{y}^{\check{F}}]^T$: values of measured observables,
- Likelihood has form $\exp[-\frac{1}{2}\chi^2]$ (in most cases),
- Prior $p(\theta)$ is chosen *flat*, within the 'physically allowed' region for the amplitudes; this region is *constrained* by:
 - $\sigma_0 = |b_1|^2 + \ldots + |b_A|^2$, in case of the CEA,
 - $\sigma_{\text{total}} = \int d\Omega \sigma_0 \propto a_0^{\sigma_0} = \sum_{\ell} \boldsymbol{c}_{\ell} |\mathcal{M}_{\ell}|^2$ in case of the TPWA.

Ideal tool: Bayesian inference

*) Use parametric version of Bayes' Theorem:

*) We have, for either the CEA or the TPWA:

- Parameters: either $\theta = \{b_i\}$, or $\theta = \{E_{\ell\pm}, M_{\ell\pm}\}$,
- $\mathbf{v} = [\mathbf{v}^{\sigma_0}, \mathbf{v}^{\check{G}}, \dots, \mathbf{v}^{\check{F}}]^T$: values of measured observables,
- Likelihood has form $\exp[-\frac{1}{2}\chi^2]$ ' (in most cases), Prior $p(\theta)$ is chosen *flat*, within the 'physically allowed' region for the amplitudes; this region is *constrained* by:

-
$$\sigma_0 = |b_1|^2 + \ldots + |b_A|^2$$
, in case of the CEA,
- $\sigma_{\text{total}} = \int d\Omega \sigma_0 \propto a_0^{\sigma_0} = \sum_{\ell} c_{\ell} |\mathcal{M}_{\ell}|^2$ in case of the TPWA.

Obtain (for instance) marginalized probability-distribution for each parameter θ_i , i.e.: $p(\theta_i|y) = \int \dots \int d\theta_1 \dots d\theta_{i-1} d\theta_{i+1} \dots d\theta_D p(\theta_1 \dots \theta_D|y)$, using state-of-the-art (Markov chain) Monte Carlo methods.

Some results for a TPWA - I

Complete experiments, TPWAs and Bayesian inference

Some results for a TPWA - I

Complete experiments, TPWAs and Bayesian inference

Some results for a TPWA - II

PWA-curves:

EtaMAID2018 (dashed); BnGa-2019 (dotted); Jülich-Bonn-2022 (dash-dotted).

Some results for a TPWA - II

Y. Wunderlich

Complete experiments, TPWAs and Bayesian inference

Some results for a TPWA - II

 \hookrightarrow Predict promising *candidate observables* for resolving discrete ambiguities:

E_{γ}^{lab} / MeV	Observables	
750	$C_{x'}, C_{z'}, L_{x'}, L_{z'}$	
850	$C_{x'}, C_{z'}, L_{x'}, L_{z'}, T_{x'}, T_{z'}$	
950	$C_{x'}, C_{z'}, L_{x'}, L_{z'}, T_{z'}$	cf.: [P. Kroenert, YW, F. Afzal and
1050	$C_{x'}, C_{z'}, L_{x'}, O_{z'}, T_{z'}$	A. Thiel, arXiv:2305.10367 [nucl-th].
1150	$C_{z'}, O_{x'}, T_{x'}, T_{z'}$	
1250	$C_{z'}$	

Thank You!

Additional Slides

Measuring the overall phase

Measure the overall phase in scattering experiments using <u>vortex beams</u> \equiv beams of particles with intrinsic orbital angular momentum $\langle L_z \rangle = \hbar \ell$ along the axis of propagation (i.e. *z*-axis) cf. [Ivanov, Phys. Rev. D 85, 076001 (2012)], [Ivanov, arXiv:2205.00412 [hep-ph] (2022)]

Measuring the overall phase

Measure the overall phase in scattering experiments using <u>vortex beams</u> \equiv beams of particles with intrinsic orbital angular momentum $\langle L_z \rangle = \hbar \ell$ along the axis of propagation (i.e. *z*-axis) cf. [Ivanov, Phys. Rev. D 85, 076001 (2012)], [Ivanov, arXiv:2205.00412 [hep-ph] (2022)]

Measuring the overall phase

Measure the overall phase in scattering experiments using <u>vortex beams</u> \equiv beams of particles with intrinsic orbital angular momentum $\langle L_z \rangle = \hbar \ell$ along the axis of propagation (i.e. *z*-axis) cf. [Ivanov, Phys. Rev. D 85, 076001 (2012)], [Ivanov, arXiv:2205.00412 [hep-ph] (2022)]

 $\begin{array}{l} \underline{\mathsf{Proposal}} & [\mathsf{Ivanov}, \,\mathsf{Phys. \, Rev. \, D} \ \mathbf{85}, \, 076001 \ (2012)]: \ \text{for the example } \gamma p \to \pi p, \ \text{consider} \\ & \text{double-twisted } \gamma p\text{-collision (i.e. both } \gamma \ \text{and } p \ \text{are in a [Bessel] vortex-state}) \\ \Rightarrow \ \mathsf{Measure} \ azimuthal \ asymmetry \ A = \frac{\Delta \sigma}{\sigma} \ (\text{'sine-weighted' c.s. } \Delta \sigma; \ \text{non-weighted } \sigma) \\ \Rightarrow \ \mathsf{Then, \, one \, has} \ \boxed{A = \frac{d\phi \left(\theta_{\gamma \pi}^{\mathsf{LAB}}\right)}{d\theta_{\gamma \pi}^{\mathsf{LAB}}} \cdot P}, \ \text{with an 'analyzing power' } P. \\ \Rightarrow \ \mathsf{For \, insanely \, good \, accuracy \, and \, statistics, \, integration \, yields: } \phi \left(\theta_{\gamma \pi}^{\mathsf{LAB}}\right) + \mathcal{C}. \end{array}$

Vortex-beams at the GeV-scale maybe feasible within 10-20 years [Ivanov, priv. comm. (2022)]

Y. Wunderlich

The Hanbury-Brown and Twiss experiment

Measure the overall phase via intensity correlations in a *Hanbury-Brown and Twiss-type* experiment [Goldberger, Lewis & Watson, Phys. Rev. 132, 2764 (1963)]

- *) One single irradiated target T
- *) Two spatially separated detectors, D_l and D_λ
- *) A CORRELATOR, which registers only in case D_l and D_λ count in *coincidence*

 $\hookrightarrow\,$ The correlator counting-rate contains an isolatable term, which is proportional to:

$$\operatorname{Re}\left[\mathcal{T}_{\lambda\leftarrow\alpha}\mathcal{T}_{l\leftarrow\alpha}^{*}\mathcal{T}_{l\leftarrow a}\mathcal{T}_{\lambda\leftarrow a}^{*}\right].$$

*) Assuming $|\mathcal{T}_{f \leftarrow i}|$ as known, one can measure cos (Γ), where: $\Gamma := \phi(\mathbf{g}_{la}) - \phi(\mathbf{g}_{l\alpha}) + \phi(\mathbf{g}_{\lambda\alpha}) - \phi(\mathbf{g}_{\lambda a}), \text{ with } \mathbf{g}_{la} \equiv \hat{R}_{a} - \hat{D}_{l}, \dots$

S,

R,

D)

CORRELATOR

Sa

Ra

₽,

Phys. Rev. 132, 2764 (1963), Fig.3]

*) Varying positions of detectors and sources, do measurements for many angles: $\begin{cases} \boldsymbol{g}_{la}^{(1)}, \boldsymbol{g}_{la}^{(2)}, \dots \end{cases}, \quad \begin{cases} \boldsymbol{g}_{l\alpha}^{(1)}, \boldsymbol{g}_{l\alpha}^{(2)}, \dots \end{cases}, \quad \begin{cases} \boldsymbol{g}_{\lambda\alpha}^{(1)}, \boldsymbol{g}_{\lambda\alpha}^{(2)}, \dots \end{cases}, \quad \begin{cases} \boldsymbol{g}_{\lambda a}^{(1)}, \boldsymbol{g}_{\lambda a}^{(2)}, \dots \end{cases} \end{cases}.$ $\hookrightarrow \text{ Extract: } \phi\left(\boldsymbol{g}_{la}^{(\nu+1)}\right) - \phi\left(\boldsymbol{g}_{la}^{(\nu)}\right) \equiv \delta\phi(\nu) \longrightarrow \underline{\text{Overall phase: }} \phi\left(\boldsymbol{g}\right).$