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Discrepant interpretations of the 
Pc(4312) nature

Molecule
Du et al., 
2102.07159

Virtual
C. F-R et al. (JPAC), 
Phys. Rev. Lett. 123, 
092001 (2019)

Double-triangle (w. 
complex coupl. in the 
Lagrangian)
Nakamura, 
Phys. Rev. D 103, 
111503 (2021)

Single triangle 
(ruled out)
LHCb, Phys. 
Rev. Lett. 122, 
222001 (2019)

See Cesar’s slides from Wednesday session on Light Mesons for connection between 
the pole number/location and their physical interpretation



Starting point - partial wave 
expansion of the amplitude 

● Unitarity relation for partial wave amplitudes

● For fixed partial wave this can be solved in the general form:

● It was shown by  Frazer, Hendry, Phys. Rev. 134 (1964) that       is 
symmetric and free from unitarity cuts, so can be Taylor 
expanded in s. 

Scattering length
Effective range



Physics model

● Intensity 

● Pc(4312) seen as a maximum in the pJ/ψ energy spectrum
● Pc(4312) has a well defined spin and appears in single partial 

wave
● Σ+

c D0 channel opens at 4.318 GeV -coupled channel problem
● Background contributes to all other waves

where 

phase space

production term 

background term



Physics model

● 2-channel model 

● How accurate the Taylor expansion of Mij has to be ?



Physics model – final version

Scattering length approximation Effective range approximation
See C. Fernandez-Ramirez Phys.Rev.Lett. 123 (2019) 9, 092001 

Finally we use the scattering length approximated amplitude as the basis for ML model

7 model parameters in total: m11, m22, m12, p0, p1, b0, b1.



ML model – general idea
● From the physical model we 

produce:
● Sample intensities (computed in 65 

energy bins) – produced with 
randomly chosen parameter 
samples – examples

● For each parameter sample we are 
able to compute the target class – 
one of the four: b|2, b|4, v|2, v|4

● Symbolically:
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ML model – MLP

Training dataset preparation:

1. Parameters were uniformly sampled from the following ranges: b0 = [ 0 ; 700 ], b1 
= [ -40 ; 40 ], p0 = [ 0 ; 600 ], p1 =  [ -35 ; 35 ], M22 = [ -0.4 ; 0.4 ], M11 = [ -4 ; 4 ], 
M12

2 = [ 0 ; 1.4 ]
2. The signal was smeared by convolving with experimental LHCb resolution:

3.To account for experimental encertainty the 5% gaussian 
noise was added 



ML model - training
● Input examples 

(effect of energy 
smearing and noise):

● Computing target classes:
● m22>0 – bound state, m22<0 – virtual state
●  To localize the poles on Riemann sheets we need to find zeros of the amplitude 

denominator in the momentum space:

with

Then poles appear on sheets defined with (η1,η2) pairs: 
(-,+) - II sheet
(+,-) - IV sheet 



ML model – training results
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Does the training data set reflect 
experimental situation ?

● Dimensionality reduction - 
Principal Component 
analysis

● Over 99% of the variance 
can be explained with just 6 
features

● Experimental data projected 
onto principal components 
are well encompassed 
within the training dataset



Model predictions – statistical 
analysis

● The distribution of the target classes was evaluated  with 
● the bootstrap (10 000 pseudo-data based on experimental mean values and uncertainties) and 

● dropout (10 000 predictions from the ML model with a fraction of weights randomly dropped out)
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Model explanation with SHAP
● Shapley values and Shapley Additive Explanations

Shapley, Lloyd S. "Notes on the n-Person Game -- II: The Value of an n-Person Game" (1951)

A B C D A B C D

Gain generated with A Gain generated w/o A

xi yi

δi=xi-yi

δ1 δ5 δ6 δ7

δ8

...

Shapley value for member A:

δ16

...

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM670.pdf


Model explanation with SHAP
● By making an association:

● Member of a coalition → Feature
● Game → Function that generates classification/regression result
● Gain → Prediction
● We define the Shapley values for features

● Caveats:
● A number of possible coalitions grows like 2N

● Prohibitively expensive computationally (NP-hard)

Solution: Shapley additive explanations (Lundberg, Lee, arXiv:1705.07874v2, 
2017)



Model explanation with SHAP
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Summary
● Takeaways:

● Standard χ2 fit may be unstable, since small change in the 
input may result in large parameter fluctuations (change 
physics interpretation) 

● Rather than testing the single model hypothesis with χ2, 
we obtained the probabilities of four competitive pole 
assignments for the Pc(4312) state

● The approach was model independent – meta model
● By the analysis of the SHAP values we obtained an ex post 

justification of our scattering length approximation



Questions to be addressed
● Applying the method for larger class of resonances, described by the same 

physics, eg. a0(980)/f0(980) [discussed by C. Fernadez-Ramires on Wednesday] or 
other resonances located near thresholds

Two situations with increasing level of generality:
● Same resonance but observed in different experiments, energy bins, channels, 

observables
● Various signals/resonances for which we believe they age governed by the same 

dynamical  mechanism, eg. the interplay of several poles lying close to the physical region
● For both cases recurrent neural networks are promising tool for analysis
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