

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) Genova, Italy, 5-9 June 2023

Machine learning exotic hadrons

AGH

Łukasz Bibrzycki Faculty of Physics and Applied Computer Science AGH University of Krakow

Joint Physics Analysis Center (JPAC)

Mikhail Mikasenko **TU Munich**

Cesar Fernández-Ramírez National Autonomous U. of Mexico

Łukasz Bibrzycki AGH Kraków

Daniel Winney South China Normal U.

Victor Mokeev Jefferson Lab

Sergi Gonzalez-Solis Los Alamos National Lab.

Adam Szczepaniak Indiana U.

Lawrence Ng Florida State U.

Alessandro Pilloni

AGH

Arkaitz Rodas

College of William and Mary

Robert Perry U. Barcelona

Astrid Hiller Blin

U. of Heidelberg

Jorge A. Silva-Castro National Autonomous U. of Mexico

Discrepant interpretations of the $P_c(4312)$ nature

See Cesar's slides from Wednesday session on Light Mesons for connection between the pole number/location and their physical interpretation

Starting point - partial wave expansion of the amplitude

$$f_{ji}(s,t) = \sum_{l=0}^{\infty} (2l+1)T_{ji}^{l}(s)P_{l}(\cos\theta(s,t))$$

Unitarity relation for partial wave amplitudes

$$\hat{T}^l - \hat{T}^{l\dagger} = 2i\hat{T}^l\hat{p}\hat{T}^{l\dagger}$$

- For fixed partial wave this can be solved in the general form: $\hat{T}^{-1} = \hat{M}(s) i\hat{p}$
- It was shown by Frazer, Hendry, Phys. Rev. 134 (1964) that \hat{M} is symmetric and free from unitarity cuts, so can be Taylor expanded in s.

AGH

Physics model

- $P_c(4312)$ seen as a maximum in the pJ/ ψ energy spectrum
 - P_c(4312) has a well defined spin and appears in single partial wave
 - $\Sigma_{c}^{+}\overline{D}^{0}$ channel opens at 4.318 GeV -coupled channel problem
 - Background contributes to all other waves
- Intensity $\frac{dN}{d\sqrt{s}} = \rho(s) \left[|P_1(s)T_{11}(s)|^2 + B(s) \right]$

where

AGH

 Λ_b^0 -

$$\begin{split} \rho(s) &= pqm_{\Lambda_b} \quad \text{phase space} \\ &p = \lambda^{\frac{1}{2}}(s, m_{\Lambda_b}^2, m_K^2)/2m_{\Lambda_b}, \; q = \lambda^{\frac{1}{2}}(s, m_p^2, m_\psi^2)/2\sqrt{s} \\ P_1(s) &= p_0 + p_1 s \quad \text{production term} \\ B(s) &= b_0 + b_1 s \quad \text{background term} \end{split}$$

Physics model

2-channel model

$$T_{ij}^{-1} = M_{ij} - ik_i \delta_{ij}$$
 where $k_i = \sqrt{s - s_i}$
 $s_1 = (m_p + m_{J/\psi})^2$ and $s_2 = (m_{\Sigma_c^+} + m_{\bar{D}^0})^2$

• How accurate the Taylor expansion of *M_{ij}* has to be ?

$$M_{ij}(s) = m_{ij} - c_{ij}s$$

Physics model – final version

See C. Fernandez-Ramirez Phys.Rev.Lett. 123 (2019) 9, 092001

Finally we use the scattering length approximated amplitude as the basis for ML model $T_{11} = \frac{m_{22} - ik_2}{(m_{11} - ik_1)(m_{22} - ik_2) - m_{12}^2}$

7 model parameters in total: *m*₁₁, *m*₂₂, *m*₁₂, *p*₀, *p*₁, *b*₀, *b*₁.

ML model – general idea

- From the physical model we produce:
 - Sample intensities (computed in 65 energy bins) – produced with randomly chosen parameter samples – **examples**
 - For each parameter sample we are able to compute the **target class** – one of the four: b|2, b|4, v|2, v|4
 - Symbolically:

Physical axis Re k₂

250 4275 4300 4325 4350 437 √s [MeV]

 $K: \{ [I_1, \dots, I_{65}](m_{11}, m_{22}, m_{12}, p_0, p_1, b_0, b_1) \} \to \{ b | 2, b | 4, v | 2, v | 4 \}$

ML model – MLP

Layer	Shape in	Shape out
Input		(B, 65)
Dense	$(\mathrm{B},65)$	(B, 400)
Dropout(p=0.2)	(B, 400)	(B, 400)
ReLU	(B, 400)	(B, 400)
Dense	(B, 400)	(B, 200)
Dropout(p=0.5)	(B, 200)	(B, 200)
ReLU	(B, 200)	(B, 200)
Dense	(B, 200)	(B, 4)
Softmax	(B, 4)	(B, 4)

400 neurons 0 neurons 0 utput layer ((s₁) ((s₁)) ((s₁) ((s₁) ((s₁)) ((s₁)) ((s₁) ((s₁)) ((s

Training dataset preparation:

- 1. Parameters were uniformly sampled from the following ranges: $b_0 = [0; 700], b_1 = [-40; 40], p_0 = [0; 600], p_1 = [-35; 35], M_{22} = [-0.4; 0.4], M_{11} = [-4; 4], M_{12}^2 = [0; 1.4]$
- 2. The signal was smeared by convolving with experimental LHCb resolution:

$$I(s) = \int_{m_{\psi}+m_{p}}^{m_{\Lambda_{b}}-m_{K}} I(s')_{\text{theo}} \exp\left[-\frac{(\sqrt{s}-\sqrt{s'})^{2}}{2R^{2}(s)}\right] d\sqrt{s'} / \int_{m_{\psi}+m_{p}}^{m_{\Lambda_{b}}-m_{K}} \exp\left[-\frac{(\sqrt{s}-\sqrt{s'})^{2}}{2R^{2}(s)}\right] d\sqrt{s'},$$
$$R(s) = 2.71 - 6.56 \times 10^{-6-1} \times \left(\sqrt{s}-4567\right)^{2}$$

3.To account for experimental encertainty the 5% gaussian noise was added

ML model - training

- Input examples (effect of energy smearing and noise):
- Computing target classes:
 - m₂₂>0 bound state, m₂₂<0 virtual state •
 - To localize the poles on Riemann sheets we need to find zeros of the amplitude denominator in the momentum space: 3 4

with

$$p_{0} + p_{1} q + p_{2} q^{2} + p_{3} q^{3} + q^{2} = 0$$

$$p_{0} = (s_{1} - s_{2}) m_{22}^{2} - (m_{12}^{2} - m_{11}m_{22})^{2}$$

$$p_{1} = 2 (s_{1} - s_{2}) m_{22} + 2m_{11} (m_{12}^{2} - m_{11}m_{22})$$

$$p_{2} = -m_{11}^{2} + m_{22}^{2} + s_{1} - s_{2}$$

$$p_{3} = 2m_{22}$$
Then poles appear on sheets defined with (n₁,n₂) pairs:

2

(-,+) - II sheet
(+,-) - IV sheet
$$\eta_1 = \text{Sign Re}\left(\frac{m_{12}^2}{m_{22}+q} - m_{11}\right) \ \eta_2 = \text{Sign Re}q$$

ML model – training results

Does the training data set reflect experimental situation ?

- Dimensionality reduction -Principal Component analysis
- Over 99% of the variance can be explained with just 6 features
- Experimental data projected onto principal components are well encompassed within the training dataset

Model predictions – statistical analysis

- The distribution of the target classes was evaluated with
 - the bootstrap (10 000 pseudo-data based on experimental mean values and uncertainties) and
 - dropout (10 000 predictions from the ML model with a fraction of weights randomly dropped out)

Model explanation with SHAP

Shapley values and Shapley Additive Explanations

Shapley, Lloyd S. "Notes on the n-Person Game -- II: The Value of an n-Person Game" (1951)

Model explanation with SHAP

- By making an association:
 - Member of a coalition → Feature
 - Game → Function that generates classification/regression result
 - Gain → Prediction
 - We define the Shapley values for features
- Caveats:
 - A number of possible coalitions grows like 2[№]
 - Prohibitively expensive computationally (NP-hard)

Solution: Shapley additive explanations (Lundberg, Lee, arXiv:1705.07874v2, 2017)

Model explanation with SHAP

Summary

- Takeaways:
 - Standard χ² fit may be unstable, since small change in the input may result in large parameter fluctuations (change physics interpretation)
 - Rather than testing the single model hypothesis with χ^2 , we obtained the probabilities of four competitive pole assignments for the P_c(4312) state
 - The approach was model independent meta model
 - By the analysis of the SHAP values we obtained an *ex post* justification of our scattering length approximation

Questions to be addressed

 Applying the method for larger class of resonances, described by the same physics, eg. a₀(980)/f₀(980) [discussed by C. Fernadez-Ramires on Wednesday] or other resonances located near thresholds

Two situations with increasing level of generality:

- Same resonance but observed in different experiments, energy bins, channels, observables
- Various signals/resonances for which we believe they age governed by the same dynamical mechanism, eg. the interplay of several poles lying close to the physical region
- For both cases recurrent neural networks are promising tool for analysis

