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1. Motivation
• To improve the Weinberg’s formalism

starting from the pioneer work of Weinberg [Weinberg, “Evidence that the
deuteron is not an elementary particle”, PR137 (1965) B672] obtained in the limit
of very small binding and zero range interaction in r-space.

scattering length effective range

a = R
[

2XW

1 + XW
+ O(

Rtyp

R
)

]
r0 = R

[
− 1− XW

XW
+ O(

R,typ

R
)

]

f =
1

k cot δ − ik
≈ 1
− 1

a + 1
2 r0k2 − ik

(scattering matrix)

Experimental data for deuteron (I = 0, J = 1)

a = 5.419(7) fm , r0 = 1.766(8) fm , B = 2.224575(9) MeV(small binding)

=⇒ XW ' 1.68 unacceptable

the actual compositeness should be X ≤ 1
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1 scattering length determine simultaneously

2 the effective range =⇒ compositeness + range of the interaction

3 the binding energy

•Application to three different cases
(small and large binding)





Deuteron

D∗
s0
(2317) =⇒ Z, r0

D∗
s1
(2460)

r0 the effective range
Z nonmolecular compositeness
X = 1− Z molecular compositeness
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2. Formalism
•We start from a potential written in momentum space as

〈p′|V|p〉 = V(p′, p) = V θ(qmax − p′)θ(qmax − p)

qmax is the range of the potential in momentum space. Its inverse would
provide the range of the interaction in coordinate space (r-space).

• Next we solve the Bethe-Salpeter equation with this potential to obtain the
T-matrix (four momentum) =⇒ The q0 integration is readily done using
Cauchy’s residues

T(p′, p) = V(p′, p)

+

∫
d3q
(2π)3 V(p′, q)T(q, p)

w1(q) + w2(q)
2w1(q)w2(q)

1
s− (w1(q) + w2(q))2 + iε

with wi(q) =
√

q2 + m2
i . By expanding in a power series

T(p′, p) = θ(qmax − p′)θ(qmax − p)T =⇒T = V + VGT

=⇒T = [1− VG]−1V (algebraic equation) ⇑ G(s)
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• Energy dependence potential (linear function) =⇒ meson-meson system
=⇒ taking an example of D∗s0

(2317) (KD, ηDs)

V = Veff = V0 + β (s− s0)
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The G(s) functions

KD
ηDs√

sR = 2317 MeV√
sth1 = 2363 MeV√
sth2 = 2516 MeV

Aceti, Dai, Geng, Oset & Zhang, “Meson-baryon components in the states of the
baryon decuplet”, EPJA50 (2014) 57 =⇒ how to construct an effective potential
Veff and evaluate the compositeness of finding molecular state (one channel)
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• The scattering matrix with potential Veff for one channel

T(s) =
1

[V0 + β(s− s0)]−1 − G(s)

it has a pole at s0 =⇒ hope to investigate

V−1
0 − G(s0) = 0, V0 =

1
G(s0)

• Establish the connection of amplitude =⇒ Quantum Mechanics

1

C
{
[ 1

G(s0)
+ β(s− s0)]−1 − G(s)

} ≈ 1
−1

a + 1
2 r0k2 − ik

C=⇒ normalization constant

Im G = − 1
8π

k√
s

=⇒ establish the connection
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8π
√

s
{[ 1

G(s0)
+ β(s− s0)

]−1 − ReG(s)
}
≈1

a
− 1

2
r0 k2

• at threshold

8π
√

sth

{[ 1
G(s0)

+ β(sth − s0)
]−1 − ReG(sth)

}
=

1
a

=⇒ β

• derivative to k2 at threshold

−1
2

r0 =
8π

2
√

sth

[[ 1
G(s0)

+ β(sth − s0)
]−1 − ReG(s)th

]
s

w1(k)w2(k)
|sth

+8π
√

sth

[
− β

[ 1
G(s0)

+ β(sth − s0)
]−2 − ∂Re[G(s)]

∂s
|s+th

]
s

w1(k)w2(k)
|sth

• nonmolecular compositeness

Z = −g2 G(s0)
2 β

g2 = lim
s→s0

(s− s0)T(s) =
1

−G(s0)2β − ∂G
∂s |s0

(L′Hospital′s rule)
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for heavy particles (deuteron)

G(E) =
∫

|q|<qmax

d3q
(2π)3

m1m2

E1(q)E2(q)
1√

s− E1(q)− E2(q) + iε

The potential is now

V = V0 + β(E − E0)

Similarly

2πEth

m1m2

{[ 1
G(E0)

+ β(E − E0)
]−1 − ReG(Eth)

}
=

1
a
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−1
2

r0 =
2π

m1m2

[
[

1
G(E0)

+ β(Eth − E0)]
−1 − ReG(E)th

]
E

2E1(k)E2(k)
|Eth

+
2πEth

m1m2

[
− β[ 1

G(E0)
+ β(Eth − E0)]

−2 − ∂Re[G(E)]
∂E

]
E

2E1(k)E2(k)
|Eth

Z = −g2 G(E0)
2 β

with

g2 = lim
E→E0

(E − E0)T(E) =
1

−G(E0)2β − ∂G
∂E |E0

(L′Hospital′s rule)

β =
1

Eth − E0

{[1
a

1
2π

m1m2

m1 + m2
+ Re G(Eth)

]−1 − 1
G(E0)

}
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3. Results





Deuteron

D∗s0
(2317) =⇒ Z, r0

D∗s1
(2460)

r0 the effective range
Z nonmolecular compositeness

X = 1− Z molecular compositeness
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Deuteron
a) Starting from qmax = 100 MeV,

Z < 0.25 indicating a strong
molecular pn component

b) qmax ≈ 140 MeV
Z = 0 indicating that the deuteron is
a molecular state

c) beyond qmax = 140 MeV, Z < 0
negative, discard this situation

1) qmax ≥ 140 MeV, rtheory
0 is close to

rexp
0 , below this value noticeable

disagreement

2) qmax is small ⇒ indicating that the
range of the NN interaction in
r-space is rather large

3) the range of the interaction ⇒
a picture of the deuteron far closer to
the actual molecular nature than
Weinberg’s equations
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qmax = 400 MeV, Z ' 0.4 = 40%
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D∗s0
(2317)

The data from QCD lattice analysis of
the finite volume levels by Torres, Oset,
Prelovsek, Ramos, JHEP 05 (2015)153
a(KD) = +1.3± 0.5± 0.1 fm
r0(KD) = −0.1± 0.3± 0.1 fm
the nominal mass 2317 MeV

a) qmax > 400 MeV, agreement between
rtheory

0 and rexp
0

b) =⇒ Z < 0.4 indicating a DK
molecular component with probability
larger than 60%

c) in agreement with the findings in
[JHEP 05 (2015)153]
P(DK) = (72± 13± 5)

d) qmax ≥ 725 MeV, Z ≤ 0
=⇒ the the range of the interaction
(light vector exchange)
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The data from QCD lattice analysis of
the finite volume levels by Torres, Oset,
Prelovsek, Ramos, JHEP 05 (2015)153
a(KD∗) = +1.1± 0.5± 0.2 fm
r0(KD∗) = −0.2± 0.3± 0.1 fm
the nominal mass 2460 MeV

a) qmax > 400 MeV, agreement between
rtheory

0 and rexp
0

b) Z never becomes zero, independent
of qmax, reaching a value of 0.2 for
large qmax

c) 0.3 < Z < 0.6. indicating a KD∗

molecular component with probability
≥ 40%

d) in agreement JHEP05(2015)153
P(KD∗) = (57± 21± 6)
=⇒ ηD∗

s channel is mostly responsible
for the remaining probability
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4. Summary
We propose an approach to evaluate simultaneously the effective range and
nonmolecular compositeness

=⇒ improving the Weinberg’s formalism [which was obtained in the limit of
very small binding and zero range interaction in r-space]

•The range of the interaction is very important to consider

the combined information of a, r0 and the binding =⇒ could provide a fair infor-
mation on the D∗

s0(2317) and D∗
s1(2460) which are bound by about 40− 45 MeV

NN interaction (deuteron) has a longer range in r-space than the KD and KD∗ in
the cases of the D∗

s0(2317) and D∗
s1(2460) states

•The molecular compositeness
determine simultaneously the value of the compositeness within a certain range, as
well as get qualitative information on the range of the interaction for three cases
(with small or larger binding)

Thank you
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