The compositeness of a bound state constrained by a and r_{0} and the role of the interaction range

L. R. Dai
Huzhou University, Zhejiang, China
The 20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023)
Genova, Italy, June 5-9, 2023
In collaboration with J. Song and E. Oset

Outline

1. Motivation

2. Formalism

3. Results 4. Summary

Song, Dai, Oset, "How much is the compositeness of a bound state constrained by a and r_{0} ? The role of the interaction range", EPJA58 (2022) 133

1. Motivation - To improve the Weinberg's formalism

starting from the pioneer work of Weinberg [Weinberg, "Evidence that the deuteron is not an elementary particle", PR137 (1965) B672] obtained in the limit of very small binding and zero range interaction in r -space.
scattering length

$$
\begin{aligned}
& a=R\left[\frac{2 X_{W}}{1+X_{W}}+O\left(\frac{R_{\mathrm{typ}}}{R}\right)\right] \quad r_{0}=R\left[-\frac{1-X_{W}}{X_{W}}+O\left(\frac{R_{\mathrm{typ}}}{R}\right)\right] \\
& f=\frac{1}{k \cot \delta-i k} \approx \frac{1}{-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}-i k} \quad(\text { scattering matrix })
\end{aligned}
$$

Experimental data for deuteron $(I=0, J=1)$
$a=5.419(7) \mathrm{fm}, r_{0}=1.766(8) \mathrm{fm}, B=2.224575(9) \mathrm{MeV}($ small binding $)$
$\Longrightarrow X_{W} \simeq 1.68$ unacceptable the actual compositeness should be $X \leq 1$
$\left\{\begin{array}{l}1 \text { scattering length } \\ 2 \text { the effective range } \\ 3 \text { the binding energy }\end{array} \Longrightarrow \quad \begin{array}{c}\text { determine simultaneously } \\ \text { compositeness }+ \text { range of the interaction }\end{array}\right.$

- Application to three different cases
(small and large binding)

$$
\left\{\begin{array}{l}
\text { Deuteron } \\
D_{s_{0}}^{*}(2317) \Longrightarrow Z, r_{0} \\
D_{s_{1}}^{*}(2460)
\end{array} \Longrightarrow \quad\right.
$$

r_{0} the effective range
Z nonmolecular compositeness
$X=1-Z$ molecular compositeness

2. Formalism

- We start from a potential written in momentum space as

$$
\left\langle\boldsymbol{p}^{\prime}\right| V|\boldsymbol{p}\rangle=V\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=V \theta\left(q_{\max }-p^{\prime}\right) \theta\left(q_{\max }-p\right)
$$

$q_{\text {max }}$ is the range of the potential in momentum space. Its inverse would provide the range of the interaction in coordinate space (r-space).

- Next we solve the Bethe-Salpeter equation with this potential to obtain the T-matrix (four momentum) \Longrightarrow The q^{0} integration is readily done using Cauchy's residues

$$
\begin{aligned}
& T\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=V\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right) \\
& +\int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}} V\left(\boldsymbol{p}^{\prime}, \boldsymbol{q}\right) T(\boldsymbol{q}, \boldsymbol{p}) \frac{w_{1}(\boldsymbol{q})+w_{2}(\boldsymbol{q})}{2 w_{1}(\boldsymbol{q}) w_{2}(\boldsymbol{q})} \frac{1}{s-\left(w_{1}(\boldsymbol{q})+w_{2}(\boldsymbol{q})\right)^{2}+i \epsilon}
\end{aligned}
$$

with $w_{i}(\boldsymbol{q})=\sqrt{\boldsymbol{q}^{2}+m_{i}^{2}}$. By expanding in a power series

$$
\begin{array}{rr}
T\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=\theta\left(q_{\max }-p^{\prime}\right) \theta\left(q_{\max }-p\right) T & \Longrightarrow T=V+V G T \\
\Longrightarrow T=[1-V G]^{-1} V \text { (algebraic equation) } & \Uparrow G(s)
\end{array}
$$

- Energy dependence potential (linear function) \Longrightarrow meson-meson system \Longrightarrow taking an example of $D_{s_{0}}^{*}(2317) \quad\left(K D, \eta D_{s}\right)$

$$
V=V_{\mathrm{eff}}=V_{0}+\beta\left(s-s_{0}\right)
$$

Aceti, Dai, Geng, Oset \& Zhang, "Meson-baryon components in the states of the baryon decuplet", EPJA50 (2014) $57 \Longrightarrow$ how to construct an effective potential $V_{\text {eff }}$ and evaluate the compositeness of finding molecular state (one channel)

- The scattering matrix with potential $V_{\text {eff }}$ for one channel

$$
T(s)=\frac{1}{\left[V_{0}+\beta\left(s-s_{0}\right)\right]^{-1}-G(s)}
$$

it has a pole at $s_{0} \Longrightarrow$ hope to investigate

$$
V_{0}^{-1}-G\left(s_{0}\right)=0, \quad V_{0}=\frac{1}{G\left(s_{0}\right)}
$$

- Establish the connection of amplitude \Longrightarrow Quantum Mechanics

$$
\frac{1}{C\left\{\left[\frac{1}{G\left(s_{0}\right)}+\beta\left(s-s_{0}\right)\right]^{-1}-G(s)\right\}} \approx \frac{1}{-\frac{1}{\mathrm{a}}+\frac{1}{2} r_{0} k^{2}-i k}
$$

$C \Longrightarrow$ normalization constant

$$
\operatorname{Im} G=-\frac{1}{8 \pi} \frac{k}{\sqrt{s}} \Longrightarrow \quad \text { establish the connection }
$$

$$
8 \pi \sqrt{s}\left\{\left[\frac{1}{G\left(s_{0}\right)}+\beta\left(s-s_{0}\right)\right]^{-1}-\operatorname{Re} G(s)\right\} \approx \frac{1}{a}-\frac{1}{2} r_{0} k^{2}
$$

- at threshold

$$
8 \pi \sqrt{s_{\mathrm{th}}}\left\{\left[\frac{1}{G\left(s_{0}\right)}+\beta\left(s_{\mathrm{th}}-s_{0}\right)\right]^{-1}-\operatorname{Re} G\left(s_{\mathrm{th}}\right)\right\}=\frac{1}{a} \Longrightarrow \beta
$$

- derivative to k^{2} at threshold

$$
\begin{array}{r}
-\frac{1}{2} r_{0}=\left.\frac{8 \pi}{2 \sqrt{s_{\mathrm{th}}}}\left[\left[\frac{1}{G\left(s_{0}\right)}+\beta\left(s_{\mathrm{th}}-s_{0}\right)\right]^{-1}-\operatorname{Re} G(s)_{\mathrm{th}}\right] \frac{s}{w_{1}(k) w_{2}(k)}\right|_{s_{\mathrm{th}}} \\
+\left.8 \pi \sqrt{s_{\mathrm{th}}}\left[-\beta\left[\frac{1}{G\left(s_{0}\right)}+\beta\left(s_{\mathrm{th}}-s_{0}\right)\right]^{-2}-\left.\frac{\partial \operatorname{Re}[G(s)]}{\partial s}\right|_{s_{\mathrm{th}}^{+}}\right] \frac{s}{w_{1}(k) w_{2}(k)}\right|_{s_{\mathrm{th}}}
\end{array}
$$

- nonmolecular compositeness

$$
\begin{aligned}
& Z=-g^{2} G\left(s_{0}\right)^{2} \beta \\
& g^{2}=\lim _{s \rightarrow s_{0}}\left(s-s_{0}\right) T(s)=\frac{1}{-G\left(s_{0}\right)^{2} \beta-\left.\frac{\partial G}{\partial s}\right|_{s_{0}}}
\end{aligned}
$$

(L'Hospital's rule)

for heavy particles (deuteron)

$$
G(E)=\int_{|\boldsymbol{q}|<q_{\max }} \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}} \frac{m_{1} m_{2}}{E_{1}(\boldsymbol{q}) E_{2}(\boldsymbol{q})} \frac{1}{\sqrt{s}-E_{1}(\boldsymbol{q})-E_{2}(\boldsymbol{q})+i \epsilon}
$$

The potential is now

$$
V=V_{0}+\beta\left(E-E_{0}\right)
$$

Similarly

$$
\frac{2 \pi E_{\mathrm{th}}}{m_{1} m_{2}}\left\{\left[\frac{1}{G\left(E_{0}\right)}+\beta\left(E-E_{0}\right)\right]^{-1}-\operatorname{Re} G\left(E_{\mathrm{th}}\right)\right\}=\frac{1}{a}
$$

$$
\begin{gathered}
-\frac{1}{2} r_{0}=\left.\frac{2 \pi}{m_{1} m_{2}}\left[\left[\frac{1}{G\left(E_{0}\right)}+\beta\left(E_{\mathrm{th}}-E_{0}\right)\right]^{-1}-\operatorname{Re} G(E)_{\mathrm{th}}\right] \frac{E}{2 E_{1}(k) E_{2}(k)}\right|_{E_{\mathrm{th}}} \\
+\left.\frac{2 \pi E_{\mathrm{th}}}{m_{1} m_{2}}\left[-\beta\left[\frac{1}{G\left(E_{0}\right)}+\beta\left(E_{\mathrm{th}}-E_{0}\right)\right]^{-2}-\frac{\partial \operatorname{Re}[G(E)]}{\partial E}\right] \frac{E}{2 E_{1}(k) E_{2}(k)}\right|_{E_{\mathrm{th}}} \\
Z=-g^{2} G\left(E_{0}\right)^{2} \beta
\end{gathered}
$$

with

$$
\begin{aligned}
g^{2} & =\lim _{E \rightarrow E_{0}}\left(E-E_{0}\right) T(E)=\frac{1}{-G\left(E_{0}\right)^{2} \beta-\left.\frac{\partial G}{\partial E}\right|_{E_{0}}} \quad \text { (L'Hospital's rule) } \\
\beta & =\frac{1}{E_{\mathrm{th}}-E_{0}}\left\{\left[\frac{1}{a} \frac{1}{2 \pi} \frac{m_{1} m_{2}}{m_{1}+m_{2}}+\operatorname{Re} G\left(E_{\mathrm{th}}\right)\right]^{-1}-\frac{1}{G\left(E_{0}\right)}\right\}
\end{aligned}
$$

3. Results

$$
\left\{\begin{array}{l}
\text { Deuteron } \\
D_{s_{0}}^{*}(2317) \Longrightarrow Z, r_{0} \\
D_{s_{1}}^{*}(2460)
\end{array} \Longrightarrow \quad \Longrightarrow \quad\right. \text {. }
$$

r_{0} the effective range Z nonmolecular compositeness $X=1-Z$ molecular compositeness

Deuteron

Deuteron

a) Starting from $q_{\text {max }}=100 \mathrm{MeV}$, $Z<0.25$ indicating a strong molecular $p n$ component
b) $q_{\max } \approx 140 \mathrm{MeV}$
$Z=0$ indicating that the deuteron is a molecular state
c) beyond $q_{\max }=140 \mathrm{MeV}, Z<0$ negative, discard this situation

1) $q_{\text {max }} \geq 140 \mathrm{MeV}$, $r_{0}^{\text {theory }}$ is close to $r_{0}^{\exp }$, below this value noticeable disagreement
2) $q_{\text {max }}$ is small \Rightarrow indicating that the range of the $N N$ interaction in r-space is rather large
3) the range of the interaction \Rightarrow a picture of the deuteron far closer to the actual molecular nature than Weinberg's equations

$D_{s_{0}}^{*}(2317)$

The data from QCD lattice analysis of the finite volume levels by Torres, Oset, Prelovsek, Ramos, JHEP 05 (2015)153
$a(K D)=+1.3 \pm 0.5 \pm 0.1 \mathrm{fm}$ $r_{0}(K D)=-0.1 \pm 0.3 \pm 0.1 \mathrm{fm}$ the nominal mass 2317 MeV
a) $q_{\max }>400 \mathrm{MeV}$, agreement between $r_{0}^{\text {theory }}$ and $r_{0}^{\text {exp }}$
b) $\Longrightarrow Z<0.4$ indicating a $D K$ molecular component with probability larger than 60%
c) in agreement with the findings in
[JHEP 05 (2015)153]
$P(D K)=(72 \pm 13 \pm 5)$
d) $q_{\text {max }} \geq 725 \mathrm{MeV}, Z \leq 0$
\Longrightarrow the the range of the interaction (light vector exchange)

$D_{s_{1}}^{*}(2460)$

The data from QCD lattice analysis of the finite volume levels by Torres, Oset, Prelovsek, Ramos, JHEP 05 (2015)153 $a\left(K D^{*}\right)=+1.1 \pm 0.5 \pm 0.2 \mathrm{fm}$ $r_{0}\left(K D^{*}\right)=-0.2 \pm 0.3 \pm 0.1 \mathrm{fm}$ the nominal mass 2460 MeV
a) $q_{\text {max }}>400 \mathrm{MeV}$, agreement between
b) Z never becomes zero, independent of $q_{\text {max }}$, reaching a value of 0.2 for large $q_{\text {max }}$
c) $0.3<Z<0.6$. indicating a $K D^{*}$ molecular component with probability $\geq 40 \%$
d) in agreement JHEP05(2015)153
$P\left(K D^{*}\right)=(57 \pm 21 \pm 6)$
$\Longrightarrow \eta D_{s}^{*}$ channel is mostly responsible for the remaining probability

4. Summary

We propose an approach to evaluate simultaneously the effective range and nonmolecular compositeness
\Longrightarrow improving the Weinberg's formalism [which was obtained in the limit of very small binding and zero range interaction in r-space]
-The range of the interaction is very important to consider
the combined information of a, r_{0} and the binding \Longrightarrow could provide a fair information on the $D_{s 0}^{*}(2317)$ and $D_{s 1}^{*}(2460)$ which are bound by about $40-45 \mathrm{MeV}$
$N N$ interaction (deuteron) has a longer range in r-space than the $K D$ and $K D^{*}$ in the cases of the $D_{s 0}^{*}(2317)$ and $D_{s 1}^{*}(2460)$ states
-The molecular compositeness
determine simultaneously the value of the compositeness within a certain range, as well as get qualitative information on the range of the interaction for three cases (with small or larger binding)

Thank you

