Sensitivity of the $\eta^{(\prime)} \rightarrow \pi^0 \gamma \gamma$ and $\eta' \rightarrow \eta \gamma \gamma$ decays to a sub-GeV leptophobic $U(1)_B$ boson

Sergi Gonzàlez-Solís (sergig@lanl.gov)

LA-UR-23-25972

Genoa, June 7, 2023

Table of Contents

\blacktriangleright Introduction

▶ $\eta \to \pi^0 \gamma \gamma$ decays: testing χPT and VMD models

 $\blacktriangleright \eta \to \pi^0 \gamma \gamma$ decays: leptophobic *B*-boson contribution

► Summary

Why is it interesting to study η/η' physics?

- Quantum numbers $I^G J^{PC} = 0^+ 0^{-+}$:
 - Eigenstates of the C, P, CP and G operators
 - Flavor conserving decays \Rightarrow laboratory for symmetry tests
 - All their strong and EM decays are forbidden at lowest order
 - The η is a pseudo-Goldstone boson
 - The η' is largely influenced by the U(1) anomaly
- Large amount of data have been collected:
 - A2@MAMI, BESIII, CLAS, CrystalBall, GlueX, KLOE(-II), WASA
- More to come:
 - JEF, REDTOP

Why is it interesting to study η/η' physics?

- Unique opportunity to:
 - Test chiral dynamics at low energy
 - Extract fundamental parameters of the Standard Model (light quark masses, $\eta\text{-}\eta^\prime$ mixing)
 - Study of fundamental symmetries: P&CP and P&CP violation
 - Looking for BSM physics \Rightarrow Dark sector
- Theoretical methods:
 - ChPT and its extensions (large- N_c)
 - Vector-meson dominance
 - Dispersion theory

Selected η/η' decays

- High priority $\eta^{(\prime)}$ decays for experiment and theory

(L. Gan, B. Kubis, E. Passemar and S. Tulin, 2007.00664)

Decay channel	Standard Model	Discrete symmetries	BSM particles
$\eta^{(\prime)} \to \pi^+ \pi^- \pi^0$	light quark masses	C/CP violation	scalar bosons
$\eta^{(\prime)} o \gamma \gamma$	η - η' mixing, width		
$\eta^{(\prime)} \to \ell^+ \ell^- \gamma$	$(g-2)_{\mu}$		Z', dark photon
$\eta^{(\prime)} \to \pi^0 \gamma \gamma$ and	higher-order χPT ,		$U(1)_B$ boson,
$\eta' ightarrow \eta \gamma \gamma$	scalar dynamics		scalar boson
$\eta^{(\prime)} ightarrow \mu^+ \mu^-$	$(g-2)_{\mu}$, precision tests	CP violation	
$\eta^{(\prime)} \to \pi^0 \ell^+ \ell^-$		C violation	scalar bosons
$\eta^{(\prime)} \to \pi^+ \pi^- \ell^+ \ell^-$	$(g-2)_{\mu}$		ALP, dark photon
$\eta^{(\prime)} \to \pi^0 \pi^0 \ell^+ \ell^-$		C violation	ALP

Table of Contents

▶ Introduction

$\blacktriangleright \eta \to \pi^0 \gamma \gamma$ decays: testing χPT and VMD models

$\blacktriangleright \eta \to \pi^0 \gamma \gamma$ decays: leptophobic *B*-boson contribution

► Summary

$\eta \to \pi^0 \gamma \gamma$ decays: Theoretical motivation

• SM motivation:

Reference	$\Gamma(\eta \to \pi^0 \gamma \gamma) [\text{eV}]$
$\mathcal{O}(p^2), \mathcal{O}(p^4)$ tree-level χPT	0
$\pi + K$ loops at $\mathcal{O}(p^4)$	1.87×10^{-3}
Experimental value (pdg)	0.34(3)

- 1^{st} sizable contribution comes at $\mathcal{O}(p^6)$, but LEC's are not well known
- To test ChPT and a wide range of chiral models, e. g. VMD and $L\sigma M$

• **BSM motivation**: search for a *B* boson via $\eta \to B\gamma \to \pi^0 \gamma \gamma$

Vector meson exchange contributions

• Six **diagrams** corresponding to the exchange of $V = \rho^0, \omega, \phi$

$$\mathcal{A}_{\eta \to \pi^0 \gamma \gamma}^{\text{VMD}} = \sum_{V = \rho^0, \omega, \phi} g_{V \eta \gamma} g_{V \pi^0 \gamma} \left[\frac{(P \cdot q_2 - m_\eta^2) \{a\} - \{b\}}{D_V(t)} + \left\{ \begin{array}{c} q_2 \leftrightarrow q_1 \\ t \leftrightarrow u \end{array} \right\} \right] ,$$

• Mandelstam variables and Lorentz structures given by:

$$t, u = (P - q_{2,1})^2 = m_\eta^2 - 2P \cdot q_{2,1} ,$$

$$\{a\} = (\epsilon_1 \cdot \epsilon_2)(q_1 \cdot q_2) - (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot q_1) ,$$

$$\{b\} = (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot P)(P \cdot q_1) + (\epsilon_2 \cdot q_1)(\epsilon_1 \cdot P)(P \cdot q_2) - (\epsilon_1 \cdot \epsilon_2)(P \cdot q_1)(P \cdot q_2) - (\epsilon_1 \cdot P)(\epsilon_2 \cdot P)(q_1 \cdot q_2)$$

$\eta \to \pi^0 \gamma \gamma$ decays: VMD calculation

• Six **diagrams** corresponding to the exchange of $V = \rho^0, \omega, \phi$

$$\mathcal{A}_{\eta \to \pi^0 \gamma \gamma}^{\text{VMD}} = \sum_{V = \rho^0, \omega, \phi} g_{V \eta \gamma} g_{V \pi^0 \gamma} \left[\frac{(P \cdot q_2 - m_\eta^2) \{a\} - \{b\}}{D_V(t)} + \left\{ \begin{array}{c} q_2 \leftrightarrow q_1 \\ t \leftrightarrow u \end{array} \right\} \right] ,$$

- $g_{VP\gamma}$ couplings:
 - Model-based:

$$\mathcal{L}_{VVP} = \frac{G}{\sqrt{2}} \epsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left[\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right] , \quad \mathcal{L}_{V\gamma} = -2eg f_{\pi}^{2} A^{\mu} \operatorname{tr} \left[Q V_{\mu} \right]$$

— Empirical: measured $\Gamma_{V(P) \to P(V)\gamma}^{exp}$ widths

• The decays $\eta' \to {\pi^0, \eta} \gamma \gamma$ are formally identical: $g_{V\eta\gamma}g_{V\pi^0\gamma} \to g_{V\eta'\gamma}g_{V{\pi^0,\eta}\gamma}$

Input for the $g_{VP\gamma}$ couplings

• $g_{VP\gamma}$ couplings fixed from the measured widths $(P = \pi^0, \eta, \eta')$

$$\Gamma_{V \to P\gamma}^{\exp} = \frac{1}{3} \frac{g_{VP\gamma}^2}{32\pi} \left(\frac{m_V^2 - m_P^2}{m_V} \right)^3 , \quad \Gamma_{P \to V\gamma}^{\exp} = \frac{g_{VP\gamma}^2}{32\pi} \left(\frac{m_P^2 - m_V^2}{m_P} \right)^3 ,$$

Decay	Branching ratio (pdg)	$ g_{VP\gamma} \text{ GeV}^{-1}$
$ ho^0 o \pi^0 \gamma$	$(4.7 \pm 0.6) \times 10^{-4}$	0.22(1)
$ ho^0 o \eta\gamma$	$(3.00 \pm 0.21) \times 10^{-4}$	0.48(2)
$\eta' o ho^0 \gamma$	$(28.9 \pm 0.5)\%$	0.40(1)
$\omega ightarrow \pi^0 \gamma$	$(8.40 \pm 0.22)\%$	0.70(1)
$\omega \to \eta \gamma$	$(4.5 \pm 0.4) \times 10^{-4}$	0.135(6)
$\eta' ightarrow \omega \gamma$	$(2.62 \pm 0.13)\%$	0.127(4)
$\phi ightarrow \pi^0 \gamma$	$(1.30 \pm 0.05) \times 10^{-3}$	0.041(1)
$\phi \to \eta \gamma$	$(1.303 \pm 0.025)\%$	0.2093(20)
$\phi \to \eta' \gamma$	$(6.22 \pm 0.21) \times 10^{-5}$	0.216(4)

$L\sigma M$ for the scalar resonance contributions

- χ PT loops complemented by the exchange of scalar resonances, $a_0(980), \kappa, \sigma, f_0(980)$, e.g.:
- Scalar amplitudes: $\mathcal{A}_{\eta^{(\prime)}\to\pi^{0}\gamma\gamma}^{\mathbb{L}^{K^{+}}} = \frac{2\alpha}{\pi} \frac{1}{m_{K^{+}}^{2}} L(s_{K})\{a\} \times \mathcal{A}_{K^{+}K^{-}\to\pi^{0}\eta^{(\prime)}}^{\mathbb{L}\sigma\mathcal{M}},$

$$\begin{split} \mathcal{A}_{K^+K^- \to \pi^0 \eta^{(\prime)}}^{\mathrm{L}\sigma\mathrm{M}} = & \frac{1}{2f_{\pi}f_K} \left\{ (s - m_{\eta^{(\prime)}}^2) \frac{m_K^2 - m_{a_0}^2}{D_{a_0}(s)} \cos \varphi_P + \frac{1}{6} \left[(5m_{\eta^{(\prime)}}^2 + m_{\pi}^2 - 3s) \cos \varphi_P \right. \\ & \left. - \sqrt{2}(m_{\eta^{(\prime)}}^2 + 4m_K^2 + m_{\pi}^2 - 3s) \sin \varphi_P \right] \right\} \,, \end{split}$$

• Complete one-loop propagator for the scalar resonances:

$$D_R(s) = s - m_R^2 + \operatorname{Re}\Pi(s) - \operatorname{Re}\Pi(m_R^2) + i\operatorname{Im}\Pi(s) ,$$

$\eta \to \pi^0 \gamma \gamma$ predictions

- Our theoretical prediction $BR = 1.35(8) \times 10^{-4}$ (Phys.Rev.D 102, 034026 (2020))
 - VMD dominates:
 - $\rho{:}~27\%$ of the signal
 - $\omega:\,21\%$ of the signal
 - $\phi : \, 0\%$ of the signal
 - interference between ρ - ω - ϕ : 52%
 - interference between scalar and vector mesons: 7%

$\eta \to \pi^0 \gamma \gamma$ predictions

- Comparison with experimental data (Phys.Rev.D 102, 034026 (2020))
 - Shape of the A2 and Crystal Ball spectra is captured well (normalization offset)
 - Good agreement
 with (preliminary)
 KLOE data
 (del Rio CD'21)
 - KLOE: Last checks on systematics are ongoing (Berlowski DNP'22)

• The experimental situation needs to be clarified (JEF, REDTOP)

$\eta' \to \pi^0 \gamma \gamma$ predictions

• Our theoretical prediction $BR = 2.91(21) \times 10^{-3}$ (Phys.Rev.D 102, 034026 (2020))

$\eta^\prime \to \pi^0 \gamma \gamma ~{\rm predictions}$

- Our theoretical prediction $BR = 2.91(21) \times 10^{-3}$ (Phys.Rev.D 102, 034026 (2020))
- First time $m_{\gamma\gamma}$ invariant mass distribution by BESIII; $BR = 3.20(7)(23) \times 10^{-3}$ (Ablikim *et. al.* Phys.Rev.D 96, 012005 (2017))

$\eta' \to \eta \gamma \gamma$ predictions

- 1^{st} BR measurement by BESIII, $BR = 8.25(3.41)(0.72) \times 10^{-5}$ or $BR < 1.33 \times 10^{-4}$ at 90% C.L. (Ablikim *et. al.* Phys.Rev.D 100, 052015 (2019))
- Our theoretical predictions $BR = 1.17(8) \times 10^{-4}$

(R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 (2020))

- VMD predominates
 (91% of the signal)
- Substantial scalar meson effects (16%)
- Interference between scalar and vector mesons (7%)

• We look forward to the release of the $m_{\gamma\gamma}$ spectrum $m_{\gamma\gamma}^2$

Table of Contents

▶ Introduction

▶ $\eta \to \pi^0 \gamma \gamma$ decays: testing χPT and VMD models

 $\triangleright \eta \rightarrow \pi^0 \gamma \gamma$ decays: leptophobic *B*-boson contribution

► Summary

Leptophobic *B* boson model

• New boson arising from a new $U(1)_B$ gauge symmetry

$$\mathcal{L}_{\rm int} = \left(\frac{1}{3}g_B + \varepsilon Q_q e\right) \bar{q}\gamma^{\mu}qB_{\mu} - \varepsilon e\bar{\ell}\gamma^{\mu}\ell B_{\mu} \,,$$

- Couples (predominantly) to quarks
- g_B new gauge (universal?) coupling, $\alpha_B = g_B^2/4\pi$
- Preserves QCD symmetries (C, P, T)
- B is a singlet under isospin:

 $I^G(J^{PC}) = 0^-(1^{--}) \Rightarrow B$ is ω meson like

— $\varepsilon = eg_B/(4\pi)^2$: (subleading) γ -like coupling to fermions

- Searches depend on the mass m_B and decay channels
- Searches on meson decays are gaining attention — $\phi \to \eta B \to \eta \pi^0 \gamma$ (KLOE-II), $\eta \to \pi^0 \gamma \gamma$ (JEF), $\eta \to \pi^+ \pi^- \gamma$ (Belle-II)

Calculation of hadronic processes

• Following the conventional VMD picture, $\mathcal{L}_{V\gamma} \rightarrow \mathcal{L}_{VB}$

Previous limits on α_B and m_B

• Assuming the Narrow-Width Approximation (NWA)

$$BR(\eta \to \pi^0 \gamma \gamma) = BR(\eta \to B\gamma) \times BR(B \to \pi^0 \gamma),$$

- QCD contribution **off**
- $BR(\eta \to \pi^0 \gamma \gamma) < BR_{exp}$ at 2σ
- $-BR(\eta \to \pi^0 \gamma \gamma)_{\rm exp} = 2.21(53) \times 10^{-4}$
- $BR(\eta' \to \pi^0 \gamma \gamma)_{\rm exp} < 8 \times 10^{-4} \, (90\% \, C.L.)$
- $BR(\eta' \rightarrow \eta \gamma \gamma)_{exp}$ no data

Present limits on α_B and m_B

• Assuming the Narrow-Width Approximation (NWA)

$$BR(\eta \to \pi^0 \gamma \gamma) = BR(\eta \to B\gamma) \times BR(B \to \pi^0 \gamma) \,,$$

- QCD contribution off
- $BR(\eta \to \pi^0 \gamma \gamma) < BR_{exp}$ at 2σ
- $BR(\eta \to \pi^0 \gamma \gamma)_{\rm exp}^{\rm pdg} = 2.56(22) \times 10^{-4}$
- $BR(\eta \to \pi^0 \gamma \gamma)_{\rm exp}^{\rm KLOE} = 1.23(14) \times 10^{-4}$ B. Cao [KLOE], PoS EPS-HEP2021 (2022) 409
- $-- BR(\eta' \to \pi^0 \gamma \gamma)_{exp} = 3.20(7)(23) \times 10^{-3}$ M. Ablikim *et.al* [BESIII], Phys.Rev. D 96 (2017) 012005
- $BR(\eta' \to \eta \gamma \gamma)_{\rm exp} = 8.25(3.41)(72) \times 10^{-5}$ M. Ablikim *et.al* [BESIII], Phys.Rev. D 100 (2019) 052015

$\eta \to \pi^0 \gamma \gamma$ decays: *B* boson calculation

- Two diagrams corresponding to the exchange of a $B~{\rm boson}$

$$\mathcal{A}^{B\,\mathrm{boson}}_{\eta\to\pi^0\gamma\gamma} = g_{B\eta\gamma}(t)g_{B\pi^0\gamma}(t) \left[\frac{(P\cdot q_2 - m_\eta^2)\{a\} - \{b\}}{m_B^2 - t - i\sqrt{t}\,\Gamma_B(t)} + \left\{ \begin{array}{c} q_2\leftrightarrow q_1\\ t\leftrightarrow u \end{array} \right\} \right]$$

• $g_{BP\gamma}$ couplings:

$$g_{B\pi^{0}\gamma}(t) = \frac{\sqrt{2}eg_{B}}{4\pi^{2}f_{\pi}}F_{\omega}(t), \quad g_{B\eta\gamma}(t) = \frac{eg_{B}}{12\pi^{2}f_{\pi}}\frac{1}{\sqrt{3}}\left[(c_{\theta}-\sqrt{2}s_{\theta})F_{\omega}(t) + (2c_{\theta}+\sqrt{2}s_{\theta})F_{\phi}(t)\right],$$

- Energy-dependent ${\bf width}$

$$\begin{split} \Gamma_{B}(q^{2}) &= \frac{\gamma_{B \to \ell + \ell -}(q^{2})}{\gamma_{B \to \ell + \ell -}(m_{B}^{2})} \Gamma_{B \to \ell + \ell -}\theta(q^{2} - 4m_{\ell}^{2}) \\ &+ \frac{\gamma_{B \to \pi^{0}\gamma}(q^{2})}{\gamma_{B \to \pi^{0}\gamma}(m_{B}^{2})} \Gamma_{B \to \pi^{0}\gamma}\theta(q^{2} - m_{\pi^{0}}^{2}) \\ &+ \frac{\gamma_{B \to \pi\pi}(q^{2})}{\gamma_{B \to \pi\pi}(m_{B}^{2})} \Gamma_{B \to \pi\pi}\theta(q^{2} - 4m_{\pi}^{2}) \\ &+ \frac{\gamma_{B \to 3\pi}(q^{2})}{\gamma_{B \to 3\pi}(m_{B}^{2})} \Gamma_{B \to 3\pi}\theta(q^{2} - 9m_{\pi}^{2}) \end{split}$$

New limits on α_B and m_B

- Not assuming the NWA
- QCD contribution **on**
- $BR_{\rm VMD+Bboson} < BR_{\rm exp}$ at 2σ
- $BR(\eta \to \pi^0 \gamma \gamma)_{\rm exp}^{\rm pdg} = 2.56(22) \times 10^{-4}$
- $BR(\eta \to \pi^0 \gamma \gamma)_{\rm exp}^{\rm KLOE} = 1.23(14) \times 10^{-4}$

B. Cao [KLOE], PoS EPS-HEP2021 (2022) 409 $\,$

$\pi^0 \gamma$ mass distribution

- These constraints would make a B boson signature suppressed
- $\pi^0 \gamma$ distribution will be very welcome (JEF?)

New limits on α_B and m_B

- Not assuming the NWA
- QCD contribution **on**
- $BR < BR_{\mathrm{exp}}$ at 2σ
- $BR(\eta' \to \pi^0 \gamma \gamma)_{exp} = 3.20(7)(23) \times 10^{-3}$ M. Ablikim *et.al* [BESIII], Phys.Rev. D 96 (2017) 012005
- $BR(\eta' \to \eta \gamma \gamma)_{exp} = 8.25(3.41)(72) \times 10^{-5}$ M. Ablikim *et.al* [BESIII], Phys.Rev. D 100 (2019) 052015
- Sharp dip when $m_B \sim m_\omega$
- Bounds 4 orders of magnitude weaker than $\eta \to \pi^0 \gamma \gamma$

Fits to the $\eta \to \pi^0 \gamma \gamma$ decays

- Crystal Ball: $\alpha_B = 0.40^{+0.07}_{-0.08}$, $m_B = 583^{+32}_{-20}$ MeV, $\chi^2_{dof} = 0.4/5 = 0.1$
- KLOE: $\alpha_B = 0.049^{+40}_{-27}$, $m_B = 135^{+1}_{-135}$ MeV, $\chi^2_{dof} = 4.5/5 = 0.9$
- signatures outside $m_{\pi^0} \lesssim m_B \lesssim m_\eta$ may be visible

Table of Contents

▶ Introduction

▶ $\eta \to \pi^0 \gamma \gamma$ decays: testing χPT and VMD models.

 $\blacktriangleright \eta \to \pi^0 \gamma \gamma$ decays: leptophobic *B*-boson contribution

Summary

- Within the VMD and L σ M frameworks we have described $- \eta \rightarrow \pi^{0} \gamma \gamma: \text{ the situation is not conclusive} \\
 BR = 1.35(8) \times 10^{-4} \begin{cases} \sim 1/2 \text{ of } BR = 2.54(27) \times 10^{-4} & \text{(A2, 2014)} \\ \sim 1.6\sigma \text{ from } BR = 2.21(24)(47) \times 10^{-4} & \text{(CB, 2008)} \\ \text{agrees with } BR = 1.23(14) \times 10^{-4} & \text{(KLOE prel., 2022)} \\ - \eta' \rightarrow \pi^{0} \gamma \gamma: \text{ in fair agreement with BESIII data} \\
 - \eta' \rightarrow \eta \gamma \gamma: \text{ in line with BESIII data} \end{cases}$
- Sensitivity to ${\cal B}$ boson has been analyzed
- Constraints on α_B, m_B have been strengthened by one order of magnitude from $\eta \to \pi^0 \gamma \gamma$
- The contribution of **new experiments** (JEF, REDTOP), will be very welcome!

Summary

Escribano, SGS, Royo, Phys.Rev.D 102, 034026 (2020)

Individual contributions

Individual contributions

Interference phase between VMD and $L\sigma M$

$$\eta^{(\prime)} \to \{\pi^0, \eta\} \ell^+ \ell^-$$
decays $(\ell = e, \mu)$

- $\eta \to \pi^0 \gamma^* \to \pi^0 \ell^+ \ell^-$ forbidden by C and CP
- $\eta \to \pi^0 \ell^+ \ell^-$ proceed via *C*-conserving two-photon intermediate state

n

Decay channel	$BR_{ m th}$ (Escribano&Royo 2007.12467)	$BR_{ m exp}$ (pdg)
$\eta \to \pi^0 e^+ e^-$	$2.1(1)(2) \times 10^{-9}$	$< 7.5 \times 10^{-6} \text{ (CL}=90\%)$
$\eta \to \pi^0 \mu^+ \mu^-$	$1.2(1)(1) \times 10^{-9}$	$< 5 \times 10^{-6} \text{ (CL}=90\%)$
$\eta' \to \pi^0 e^+ e^-$	$4.6(3)(7) \times 10^{-9}$	$< 1.4 \times 10^{-3} \text{ (CL=90\%)}$
$\eta' ightarrow \pi^0 \mu^+ \mu^-$	$1.8(1)(2) \times 10^{-9}$	$< 6.0 \times 10^{-5} \text{ (CL=}90\%)$
$\eta' \to \eta e^+ e^-$	$3.9(3)(4) \times 10^{-10}$	$< 2.4 \times 10^{-3} \text{ (CL=90\%)}$
$\eta' ightarrow \eta \mu^+ \mu^-$	$1.6(1)(2) \times 10^{-10}$	$< 1.5 \times 10^{-5} \text{ (CL=90\%)}$

- Background for BSM searches, $e.g.\ C-violating virtual photon exchange or new scalar mediators$
- REDTOP can improve the experimental state