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MOTIVATIONS

Predictions of hadronic amplitudes, decay rates, spectral densities
important tests of the Standard Model
(g —2), based e.g. on v — 7ha™, ¥ — 4y
test of CP violation in K, D decays
improve our understanding of strong interactions
properties of resonances like p°

Lattice QCD: non-perturbative formulation of QCD
first-principle predictions from 3-4 input parameters
systematically improvable w/ better algorithms and HPC
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LATTICE FIELD THEORIES

lattice spacing a — regulate UV divergences -
finite size L — infrared regulator
Continuum theory a — 0, L — oo L

Euclidean metric — Boltzman interpretation
of path integral Ja

(0) = 21 /[DU]e‘S[U]O(U) ~ L3 owy

Very high dimensional integral — Monte-Carlo methods
Markov Chain of gauge field configs Uy - Uy — --- — Un :
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ANALYTIC CONTINUATION - [

Time-momentum representation very natural for Lattice QCD
project operator O to definite spatial momentum
evaluate C(t) = (O(t)O(0))

+ Physical observables as integrals of spectral densities
P = [ dwr(w) plw)
e.g. inclusive diff. decay rate semileptonic [Gambino, Hashimoto '20]

+ Correlator is integral of spectral density C(t) = [ dwe™“I*lp(w)

= Solve P = [dt f(t) C(t) for unknown f?
k(iw): study analytic continuation of kernel

A
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ANALYTIC CONTINUATION - II

p has branch cuts starting at multi-particle
thresholds Fiy,,

Kernel k can have poles s; in complex plane

if Res; < E}y, direct analytic continuation from Euclidean C(t)
VtIM >0 f()O(t) < e M?
e.g. HVP contribution to (g — 2)ﬂ [Blum '02][Bernecker-Meyer '11]

if Res; > Fiy, direct analytic continuation not possible
>+ f(t) G(t) diverges exponentially )

A

< DEGLI STUDI

©3 UNIVERSIT
ONVTIN I

1C0CCA

4/11



INVERSE PROBLEM

Lattice QCD: C(t) for finite Euclidean ¢ + non-zero errors
inverse Laplace ill-defined problem — approximate num. solutions

[M. Saccardi’s talk] [Backus, Gilbert '68][HLT '19][Bailas et al. '20 ...]
] smooth Dirac d,
C(t) finite discrete Euclidean times 78N
cannot extract continuous p(w) £\

po(w) = [ o/lw p(w) d, (W — w) / \\\

o/ / \
(50(1‘) = 27407 / '

_— ~

Smeared p needed for 2 reasons
large smearing improves regularized solutions
large smearing improves finite-volume errors (this talk)

Cutoff effects of smeared p under investigation following  [Sommer LatZ




SMEARED SPECTRAL DENSITIES

po analityc continuation in complex plane of p [Poggio, Quinn, Weinberg '76]

o) = [ dapte)so (o) = U/d%

27” /]R-i—'w /R io Z -
8 po has physical meaning
6
Calculable in PT deep in
4 complex plane (o > 2 GeV)
2
Lattice calculations L ~ 1/0
O
R-ratio data [F. Jegelehner]
0.0 0.5 0&001 =DEGLI STUDI
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FINITE VOLUME

Quantization of spectrum

Lattice Simulations performed in finite box L3 x T (T large)
periodic BC = 227, i € 73
— spectrum quantized

! o H—»HOOJ—W%

Hamiltonian H, (on slice L3), momentum operator P;
Hilbert space Hy|n,p)r = En(7,L)|n,p)1
scattering? decay rates?
what is meaning of |n,p); and F, (7, L)?

DEGLI STUDI
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QFT IN A FINITE BOX

Liischer formalism

1. s-channel one-loop diagram

Il
f dkg ] iz(k) iz(P—k)
(2,\,); k2— m2+ze (P—k)2—m2+ie
ML iz(k) iz(P—k) _
Il

27 L3 kEEZ—m2tie (P—k)2—m?2+ie

2. evaluate integral-sum difference w/ Poisson’s formula
non-analytic function — 1/L™ corrections, i.e. loop legs on-shell
analytic function — e =% corrections, i.e. loop legs off-shell

3. re-sum all 2 — 2 diagrams
2 — 4 diagrams 1/L* correction if \/s > 4m
quantization condition Q(E,,) = nrw




SMEARED SPECTRAL DENSITIES

Finite volume effects

Scalar current J projected to zero-momentum
ple) = OB =) 8P)I0) > plelt) = L0 o

Goal: finite volume effects of fdw p(w|L) k(w) [MB, Hansen in prep]
k(w) = e~ correlator (checks w/ literature)
k(w) = 05 (w — E): smeared p,

Setup of our derivation:
1. lowest partial wave Liischer quantization condition Q(E,,) = nw
2. applicable to I =1 vector-vector channel

Our work builds upon [Lellouch-Liischer '00][Hansen-Sharpe '12][...]

[Bulava, Hansen, Hansen, Patella, Tantalo '21]

< DEGLI ST Ul)l
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Pelw]L) — palw) = /

R+ iy

FINITE VOLUME EFFECTS

Preliminary

[MB, Hansen in prep]

2
p 2iQ(w 2 ./,
dpme @ Fr (w)|? 1 (w)
wlp) = 2/ F P
eQiQ(w) ~ e1';0L N e—pL
how large u?
o
O Finite-vol effects driven
IA \F by analytic structure of
> w
% M |}77.r ((,51()1)7) ) ‘ 2 ; [)\E(\}l,l S'I'Ul;
Kw(p)) &
BICOCCA



CONCLUSIONS

Smeared spectral densities p, have physical meaning
o > 0 needed to control finite-vol effects
is o ~ 0 really needed for physics?
e.g. CMD3 vs BaBar vs KLOE o ~ m,, likely sufficient!

8 [MB, Hansen in prep]
6 (a plausible) recipe

1. take lattice w/ given m, L
4

2. take smeared p w/ 0 = m,
2 3. calculate p w/ stat. errs 1%
4. move to larger L (same m)

O
0.0 0.5 02001 for point 3. [M. Saccardi’s talk] )
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