On the prediction of spectral densities from Lattice QCD: Theoretical aspects

Mattia Bruno work in collab. with Maxwell T. Hansen

Hadron2023 20th International Conference on Hadron Spectroscopy and Structure Genova, Italy, June 6th

MOTIVATIONS

Predictions of hadronic amplitudes, decay rates, spectral densities important tests of the Standard Model $(g-2)_{\mu}$ based e.g. on $\gamma \to \pi^+\pi^-$, $\pi^0 \to \gamma\gamma$

test of CP violation in $K,\,D$ decays improve our understanding of strong interactions properties of resonances like ρ^0

Lattice QCD: non-perturbative formulation of QCD first-principle predictions from 3-4 input parameters systematically improvable w/ better algorithms and HPC

> DEGLI STUDI BICOCCA CONCA CONO

LATTICE FIELD THEORIES

lattice spacing $a \rightarrow \text{regulate UV}$ divergences finite size $L \rightarrow \text{infrared regulator}$

Continuum theory $a \to 0$, $L \to \infty$

$$\langle O \rangle = \mathcal{Z}^{-1} \int [DU] e^{-S[U]} O(U) \approx \frac{1}{N} \sum_{i=1}^{N} O[U_i]$$

Very high dimensional integral \rightarrow Monte-Carlo methods Markov Chain of gauge field configs $U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_N$

ANALYTIC CONTINUATION - I

- Time-momentum representation very natural for Lattice QCD project operator \mathcal{O} to definite spatial momentum evaluate $C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle$
- + Physical observables as integrals of spectral densities $P = \int d\omega \kappa(\omega) \rho(\omega)$ e.g. inclusive diff. decay rate semileptonic [Gambino, Hashimoto '20]
- + Correlator is integral of spectral density $C(t) = \int d\omega e^{-\omega |t|} \rho(\omega)$
- = Solve $P = \int dt f(t) C(t)$ for unknown f? $\kappa(i\omega)$: study analytic continuation of kernel

Analytic continuation - II

 ρ has branch cuts starting at multi-particle thresholds $E_{\rm thr}$

Kernel κ can have poles s_i in complex plane

 $\begin{array}{l} \mathrm{if}\; \mathrm{Re} s_i \leq E_{\mathrm{thr}} \; \mathrm{direct}\; \mathrm{analytic}\; \mathrm{continuation}\; \mathrm{from}\; \mathrm{Euclidean}\; C(t) \\ \forall t\; \exists M>0 \mid f(t)C(t) < e^{-Mt} \\ \mathrm{e.g.}\; \mathrm{HVP}\; \mathrm{contribution}\; \mathrm{to}\; (g-2)_{\mu} \; \; [\mathrm{Blum}\; '02] [\mathrm{Bernecker-Meyer}\; '11] \\ \end{array}$

if $\operatorname{Re}_{s_i} > E_{\operatorname{thr}}$ direct analytic continuation not possible $\sum_t f(t) G(t)$ diverges exponentially

BICOCCA ± 2000 4/11

INVERSE PROBLEM

$$\begin{split} C(t) \text{ finite discrete Euclidean times} \\ \text{cannot extract continuous } \rho(\omega) \\ \rho_{\sigma}(\omega) &= \int d\omega' \, \rho(\omega') \, \delta_{\sigma}(\omega'-\omega) \\ \delta_{\sigma}(x) &= \frac{\sigma/\pi}{x^2 + \sigma^2} \end{split}$$

Smeared ρ needed for 2 reasons large smearing improves regularized solutions large smearing improves finite-volume errors (this talk)

Cutoff effects of smeared ρ under investigation following

SMEARED SPECTRAL DENSITIES

 ρ_σ analityc continuation in complex plane of ρ [Poggio, Quinn, Weinberg '76]

$$\begin{split} \rho(x)\delta_{\sigma}(x,\omega) &= \frac{\sigma}{\pi} \int dx \frac{\rho(x)}{(x-\omega)^2 + \sigma^2} \\ &= \frac{1}{2\pi i} \Big[\int_{\mathbb{D}_{+},i\sigma} - \int_{\mathbb{D}_{-},i\sigma} \Big] dz \frac{\rho(z)}{z-\omega} \end{split}$$

 ρ_σ has physical meaning

Calculable in PT deep in complex plane ($\sigma \gg 2 \text{ GeV}$)

Lattice calculations $L \simeq 1/\sigma$

R-ratio data [F. Jegelehner]

FINITE VOLUME

Quantization of spectrum

(日) (四) (日) (日) (日)

Lattice Simulations performed in finite box $L^3 \times T$ (T large) periodic BC $\vec{p} = \frac{2\pi}{L} \vec{n}, \vec{n} \in \mathbb{Z}^3$ \rightarrow spectrum guantized $L \to \infty$ Hamiltonian \hat{H}_L (on slice L^3), momentum operator \hat{P}_i Hilbert space $\hat{H}_L | n, \vec{p} \rangle_L = E_n(\vec{p}, L) | n, \vec{p} \rangle_L$ scattering? decay rates? what is meaning of $|n, \vec{p}\rangle_L$ and $E_n(\vec{p}, L)$?

7/11

QFT IN A FINITE BOX

Lüscher formalism

A D F A B F A B F A B F

1. s-channel one-loop diagram

$\int dk_0 \int d\vec{k} = iz(k) = iz(P-k)$
$\int \frac{2\pi}{2\pi} \int \frac{(2\pi)^3}{k^2 - m^2 + i\epsilon} \frac{(P-k)^2 - m^2 + i\epsilon}{iz(P-k)} \frac{iz(P-k)}{iz(P-k)}$
$\int \overline{2\pi} \overline{L^3} \sum \overline{k} \overline{k^2 - m^2 + i\epsilon} \overline{(P-k)^2 - m^2 + i\epsilon}$

- 2. evaluate integral-sum difference w/ Poisson's formula non-analytic function $\rightarrow 1/L^n$ corrections, i.e. loop legs on-shell analytic function $\rightarrow e^{-mL}$ corrections, i.e. loop legs off-shell
- 3. re-sum all $2 \rightarrow 2$ diagrams $2 \rightarrow 4$ diagrams $1/L^k$ correction if $\sqrt{s} > 4m$ quantization condition $Q(E_n) = n\pi$

SMEARED SPECTRAL DENSITIES Finite volume effects

Scalar current J projected to zero-momentum $\rho(\omega) = \langle 0 | \hat{J} \, \delta(\hat{H} - \omega) \, \delta^3(\vec{P}) \, \hat{J} | 0 \rangle \quad \rightarrow \quad \rho(\omega|L) = \sum_n |\langle 0 | \hat{J} | n \rangle_L |^2$

Setup of our derivation:

- 1. lowest partial wave Lüscher quantization condition $Q(E_n) = n\pi$
- 2. applicable to I = 1 vector-vector channel

Our work builds upon [Lellouch-Lüscher '00][Hansen-Sharpe '12][...] [Bulava, Hansen, Hansen, Patella, Tantalo '21]

FINITE VOLUME EFFECTS Preliminary

[MB, Hansen in prep]

10/11

CONCLUSIONS

 $\begin{array}{l} \mbox{Smeared spectral densities ρ_{σ} have physical meaning} \\ \sigma \gg 0 \mbox{ needed to control finite-vol effects} \\ \mbox{is $\sigma\simeq0$ really needed for physics?} \\ \mbox{e.g. CMD3 vs BaBar vs KLOE $\sigma\simeqm_{\pi}$ likely sufficient!} \end{array}$

[MB, Hansen in prep] (a plausible) recipe 1. take lattice w/ given $m_{\pi}L$ 2. take smeared ρ w/ $\sigma = m_{\pi}$ 3. calculate ρ w/ stat. errs 1% 4. move to larger L (same m_{π})

for point 3. [M. Saccardi's talk]

Thanks for the attention