Molecular Ω_{cc} , Ω_{bc} and Ω_{bb} states.

Albert Feijoo Institut de Física Corpuscular (IFIC), Centre Mixt U. de València-CSIC

Wen Fei Wang

Institute of Theoretical Physics, Shanxi University, Taiyuan

Jing Song School of Physics, Beihang University, Beijing

Eulogio Oset

Institut de Física Corpuscular (IFIC), Centre Mixt U. de València-CSIC

The new $\Omega_c's$ observed at LHCb:

R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017).

Constituent Quark Models (CQMs) interpretation:

• Bound states consisting of 1 heavy quark (c) and a P-wave (ss) diquark. (System that gives 5 possible combinations)

$$S_c = \frac{1}{2}, S_{ss} = 1 + L_{ss} = 1 \to J^P = \frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$$

M. Karliner and J. L. Rosner, Phys. Rev. D 95, no.11, 114012 (2017).
W. Wang and R. L. Zhu, Phys. Rev. D 96, no.1, 014024 (2017).
Z. G. Wang, Eur. Phys. J. C 77, no.5, 325 (2017).
B. Chen and X. Liu, Phys. Rev. D 96, no.9, 094015 (2017).

• Alternative interpretation: some states (the 3 lightest ones) remain with (ss) diquark with 1P orbital excitation and the others with 2S radial excitations.

 $J^P = \frac{3}{2}^{-}, \frac{5}{2}^{-}, \frac{1}{2}^{+}, \frac{3}{2}^{+}$

- S. S. Agaev, K. Azizi and H. Sundu, EPL 118, no.6, 61001 (2017).
- S. S. Agaev, K. Azizi and H. Sundu, Eur. Phys. J. C 77, no.6, 395 (2017).
- H. Y. Cheng and C. W. Chiang, Phys. Rev. D 95, no.9, 094018 (2017).
- K. L. Wang, L. Y. Xiao, X. H. Zhong and Q. Zhao, Phys. Rev. D 95, no.11, 116010 (2017).

What about a molecular interpretation of these states?

Resonance	Mass (MeV)	Γ (MeV)
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$
		<1.2 MeV, 95% C.L.
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5 \pm 0.4 \pm 0.2$
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$
	-0.5	<2.6 MeV, 95% C.L.

R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017).

- The $\overline{K}\Xi_c$ (2964 MeV) and $\overline{K}\Xi'_c$ (3070 MeV) thresholds are within the energy range where the physical Ω_c states pop up!!!
- Prior to the experimental measurement, some theoretical works predicted some states in this sector :
- 1. SU(8) spin-flavor sym. Model → 5 states much more bound than the LHCb ones. O. Romanets et al., Physical. Rev. D85,114032 (2012)
- 2. SU(4) finite range Model
 - J. Hofmann and M.F.M. Lutz, Nucl. Phys. A 763, 90-139 (2005) → 3 states below 2953 MeV
 - C. E. Jimenez-Tejero, A. Ramos and I. Vidaña, Phys. Rev. C 80, 055206 (2009) \rightarrow 3 states, one at 3117 MeV (Γ = 16 MeV)!!!

Molecular-Picture Models revisited G. Montaña, A. F. and A. Ramos, Eur. Phys. J. A 54, no.4, 64 (2018)

 Ω_c states dynamically generated by the s-wave interaction between a pseudoscalar meson and a ground state baryon:

$0^- \oplus \frac{1}{2}^+$ integrates	eractior	n in the (I, S, C)	C) = (0)	(,-2,1) sect	tor	
		Mod	lel 1			The state at 2051 MoV mainly
$M [{ m MeV}]$		3051.6		3103.3		The state at 3051 MeV mainly composed by $K\Xi'$ and $\pi 0$
$\Gamma [MeV]$		0.45		17		composed by $K \simeq_c$ and $\eta \simeq_c$
_	$ g_i $	$-g_i^2 dG/dE$	$ g_i $	$-g_i^2 dG/d$	lE	
$K \Xi_c(2964)$	0.11	0.00 + i 0.00	0.58	0.01 + i 0.	.03	The state at 3103 MeV is
$K \Xi_{c}'(3070)$	1.67	0.54 + i 0.01	0.30	0.01 - i 0.	.01	basically a DE bound state
$D\Xi(3189)$	1.10	0.05 - i 0.01	4.08	0.90 - i 0.	.05	busidariy a DE bound state
$\eta\Omega_c(3246)$	2.08	0.23 + i 0.00	0.44	0.01 + i 0.000 + i 0.	.01 _	→10 MeV too heavy and too wide.
$\eta'\Omega_c(3656)$	0.04	0.00 + i 0.00	0.28	0.00 + i 0.00	.00	
Experimen	tal state	es		2		
$\Omega_c(3050)^0$:	M :	$= 3050.2 \pm 0.1$ =	$\pm 0.1^{+0}_{-0}$	$^{.5}_{.5}$ MeV,	A = =	units of the internal sector of the sector is
		$\Gamma = 0.8 \pm 0.2$	±0.1 M	[eV,	Assu	ming this scheme, spin-parity
$\Omega_c(3090)^0$:	M :	$= 3090.2 \pm 0.3$ =	$\pm 0.5^{+0}_{-0}$	$^{.3}_{.5}$ MeV,	can c	DNIY De 1/2-!
		$\Gamma = 8.7 \pm 1.0$	± 0.8 N	ſeV		
				ידד		N IVERSITAT

Molecular-Picture Models revisited

V. R. Debastiani, J. M. Dias, W. H. Liang and E. Oset, Phys. Rev. D 97, no.9, 094035 (2018)

- Extension of the local hidden gauge approach with heavy-baryon states as a spectator c quark + sym. wave functions of the remaining light quarks
- Inclusion of pseudoscalar-decuplet baryon channels

→ Same 2 states with $J^P = \frac{1}{2}$ and a new $J^P = \frac{3}{2}$ Ω_c resonance which could be identified with the LHCb Ω_c (3119)

- J. Nieves, R. Pavao and L. Tolos, Eur. Phys. J. C 78, no.2, 114 (2018)
 - SU(6)_{lsf} xHQSS-extended WT meson-baryon interaction
 - The symmetries automatically account for the additional presence of additional vector mesons and 3/2⁺baryons

→ 2 states with $J^P = \frac{1}{2}$ and 1 $J^P = \frac{3}{2}$ state consistent with the experimental $\Omega_c(3000)$, $\Omega_c(3050)$ and $\Omega_c(3119)$

	$\delta M_{\rm peak} \ [{\rm MeV}]$	Mass [MeV]	Width [MeV]
$\Omega_{b}(6316)^{-}$	$523.74 \pm 0.31 \pm 0.07$	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$	< 2.8 (4.2)
$\Omega_{b}(6330)^{-}$	$538.40 \pm 0.28 \pm 0.07$	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$	< 3.1 (4.7)
$\Omega_{b}(6340)^{-}$	$547.81 \pm 0.26 \pm 0.05$	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$	< 1.5 (1.8)
$\Omega_{b}(6350)^{-}$	$557.98 \pm 0.35 \pm 0.05$	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$	< 2.8 (3.2)
			$1.4^{+1.0}_{-0.8}\pm 0.1$

R. Aaij et al. [LHCb], Phys. Rev. Lett. 124, no.8, 082002 (2020)

Predictions by Molecular-Picture Models:

• W. H. Liang, J. M. Dias, V. R. Debastiani and E. Oset, Nucl. Phys. B 930, 524 (2018) 7 Ω_b^- states were generated dinamically with 1/2- and 3/2- (lowest mass 50MeV above Ω_b^- (6350))

• W. H. Liang and E. Oset, Phys. Rev. D 101, no.5, 054033 (2020)

Arguments against the molecular nature of these states, instead structures at higher energies should be analysed

• J. Nieves, R. Pavao and L. Tolos, Eur. Phys. J. C 80, 22 (2020) Prediction of a 1/2- state Ω_b^- (6360) as member of a sextet jointly with Ξ_b (6227) and Σ_b (6227)

• G. Montaña, A. F. and A. Ramos, Eur. Phys. J. A 54, no.4, 64 (2018) $2 \Omega_b^-$ states were generated dinamically with 1/2- (lowest mass 70MeV above Ω_b^- (6350))

Ω_{QQ} states

→ The plans of LHCb to measure Ω_{cc} , Ω_{bc} and Ω_{bb} states has motivated the present study.

Theoretical studies dedicated to this topic from different approaches:

Quark Models
Mod. Phys. Lett. A 14, 135 (1999), Phys. Rev. D 66, 014008 (2002), Int. J. Mod. Phys. A 23, 2817 (2008)
Phys. Lett. B 683, 21 (2010), Phys. Rev. D 98, 094021 (2018), Chin. Phys. C 44, 013102 (2020)
...
Lattice QCD
Phys. Rev. D 64, 094509 (2001), Phys. Rev. D 90, 094507 (2014)
Phys. Rev. D 94, 074003 (2016), Phys. Rev. D 98, 114505 (2018)
...
QCD sum rules
Eur. Phys. J. A 45, 267 (2010), Chin. Phys. C 42, 123102 (2018)
Eur. Phys. J. C 78, 826 (2018)
...
Other approaches
Phys. Rev. D 83, 056006 (2011), Phys. Rev. Lett. 115, 122001 (2015), Phys. Rev. D 102, 014013 (2020), [Erratum: Phys.Rev.D 104, 059901 (2021), Phys. Rev. D 104, 074027 (2021)

 Ω_{QQ} states: Sectors with their corresponding meson-baryon basis

 $\Xi_c^* D^*$

4656

 $\Omega_{cc}^*\omega$

4552

W. F. Wang, A. F., J. Song and E. Oset, arXiv:2208.14858 [hep-ph]

TABLE I: Threshold masses (in MeV) of different channels for Ω_{cc} .						
$DD(1^+) I^P 1^-$	$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'D$		
$PB(\overline{2}), J \equiv \overline{2}$	4115	4263	4338	4448		
$PB(\frac{3}{2}^+), J^P = \frac{3}{2}^-$	$\Xi_{cc}^*\bar{K}$	$\Omega_{cc}^*\eta$	$\Xi_c^* D$			
	4168	4320	4516			
$VP(1^+)$ $I^P = 1^- 3^-$	$\Xi_{cc}\bar{K}^*$	$\Omega_{cc}\omega$	$\Xi_c D^*$	$\Xi_c' D^*$		
$V D(\overline{2}), J = \overline{2}, \overline{2}$	4512	4495	4478	4588		

 $\Xi_{cc}^* \bar{K}^*$

4565

 $VB(\frac{3}{2}^+), J^P = \frac{1}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-$

$PB(\frac{1}{2}^+), J^P = \frac{1}{2}^-$	$\Xi_{bb}\bar{K}$	$\Omega_{bb}\eta$	$\Xi_b \bar{B}$	$\Xi_b'\bar{B}$
	10833	10778	11076	11214
$PB(3^+) I^P - 3^-$	$\Xi_{bb}^* \bar{K}$	$\Omega_{bb}^*\eta$	$\Xi_b^* \bar{B}$	
$PB(\overline{2}), J \equiv \overline{2}$	10863	10806	11231	
$VB(\frac{1}{2}^+), J^P = \frac{1}{2}^-, \frac{3}{2}^-$	$\Xi_{bb}\bar{K}^*$	$\Omega_{bb}\omega$	$\Xi_b \bar{B}^*$	$\Xi_b'\bar{B}^*$
	11230	11010	11122	11260
$VB(3^+)$ $I^P = 1^{-3^-5^-}$	$\Xi_{bb}^* \overline{K}^*$	$\Omega_{bb}^*\omega$	$\Xi_b^* \overline{B}^*$	
$VD(\frac{1}{2}), J = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	11260	11038	11277	

TABLE II: Threshold masses (in MeV) of different channels for Ω_{bb} .

TABLE III: Threshold masses (in MeV) of different channels for Ω_{bc} .

$PP(1^+) I^P - 1^-$	$\Xi_{bc}\bar{K}$	$\Omega_{bc}\eta$	$\Xi_b D$	$\Xi_c \bar{B}$
$I D(\frac{1}{2}), J = \frac{1}{2}$	7415	7559	7667	7747
$PD(1^+) I^P - 1^-$	$\Xi_{bc}'\bar{K}$	$\Omega_{bc}^{\prime}\eta$	$\Xi_b'D$	$\Xi_c'\bar{B}$
$PB(\frac{1}{2}), J^{*} = \frac{1}{2}$	7441	7595	7805	7857
$PB(\frac{3}{2}^+), J^P = \frac{3}{2}^-$	$\Xi_{bc}^*\bar{K}$	$\Omega_{bc}^*\eta$	$\Xi_b^* D$	$\Xi_c^* \bar{B}$
	7466	7614	7822	7925
$V D(1^+) I^P = 1^- 3^-$	$\Xi_{bc}\bar{K}^*$	$\Omega_{bc}\omega$	$\Xi_b D^*$	$\Xi_c \bar{B}^*$
$V B(\frac{1}{2}), J = \frac{1}{2}, \frac{1}{2}$	7812	7791	7807	7793
$VB(\frac{1}{2}^+), J^P = \frac{1}{2}^-, \frac{3}{2}^-$	$\Xi_{bc}'\bar{K}^*$	$\Omega_{bc}^{\prime}\omega$	$\Xi_b' D^*$	$\Xi_c'\bar{B}^*$
	7838	7827	7945	7903
$VD(3^+)$ $I^P = 1^- 3^- 5^-$	$\Xi_{bc}^* \bar{K}^*$	$\Omega_{bc}^*\omega$	$\Xi_b^* D^*$	$\Xi_c^* \bar{B}^*$
$VD(\overline{2}), J \equiv \overline{2}, \overline{2}, \overline{2}$	7863	7846	7962	7971

HADRON 2023 June 5 - 9, 2023, Genova, Italy.

10

W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)

HADRON 2023 June 5 - 9, 2023, Genova, Italy.

11

W. F. Wang, A. F., J. Song and E. Oset, arXiv:2208.14858 [hep-ph]

$$V_{ij} = -C_{ij} \frac{1}{4f_{\pi}^2} (p_1^0 + p_3^0)$$

$$\frac{1}{(q^0)^2 - |\vec{q}|^2 - m_{D^*}^2} \approx \frac{1}{(m_D - m_\eta)^2 - m_D^2}$$

TABLE V: Coefficients C_{ij}	for the PB	sector with J^{2}	$P = \frac{1}{2}$;
--------------------------------	------------	---------------------	-------------------	---

	$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'D$			
$\Xi_{cc}\bar{K}$ $\Omega_{cc}\eta$ $\Xi_{c}D$ $\Xi_{c}'D$	2	$ \frac{2\sqrt{2}}{\sqrt{3}} $ 0	$\frac{-\sqrt{3}}{2\sqrt{2}}\lambda \\ -\frac{1}{2}\lambda \\ 2$	$\frac{\frac{1}{2\sqrt{2}}\lambda}{\frac{-1}{2\sqrt{3}}\lambda}$ 0 2			
$\lambda \equiv \frac{1}{(n)}$	$\lambda \equiv \frac{-m_V^2}{(m_D - m_\eta)^2 - m_{D^*}^2} \approx 0.25$						

HADRON 2023 June 5 - 9, 2023, Genova, Italy.

TABLE IX: Coefficients C_{ij} for the PB sector with $J^P = \frac{1}{2}^{-}$.

	$\Omega_{bb}\eta$	$\Xi_{bb}\bar{K}$	$\Xi_b \bar{B}$	$\Xi_b'\bar{B}$
$\Omega_{bb}\eta$	0	$\frac{2\sqrt{2}}{\sqrt{3}}$	0	0
$\Xi_{bb}\bar{K}$		2	0	0
$\Xi_b \bar{B}$			2	0
$\Xi_b'\bar{B}$				2

 $\lambda = 0$

Unitarized T-matrix from coupled-channel Bethe-Salpeter equation solved through On-shell factorization:

$$T_{ij} = (1 - V_{il}G_l)^{-1}V_{lj}$$

Meson-baryon loop function

$$G_l^{\text{cut}} = \int_0^{\Lambda} \frac{d^3 q}{(2\pi)^3} \frac{1}{2\omega_l(\vec{q})} \frac{M_l}{E_l(\vec{q})} \frac{1}{\sqrt{s} - \omega_l(\vec{q}) - E_l(\vec{q}) + i\epsilon}$$
Cut-off regularization method
$$\Lambda = 650 MeV$$

Ω_{QQ} states: Results

W. F. Wang, A. F., J. Song and E. Oset, arXiv:2208.14858 [hep-ph]

TABLE XVIII: The poles for Ω_{cc} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{1}{2}^-$ sector from $PB(\frac{1}{2}^+)$.

Poles		$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'D$
4060.86	g_i	2.63	1.55	-1.10	0.26
4009.00	$g_i G_i^{II}$	-40.42	-13.26	3.59	-0.65
4205 22 + 30.04	g_i	0.10 + i0.20	0.04 + i0.09	6.25 - i0.04	0.09 + i0.01
4205.22 ± 10.94	$g_i G_i^{II}$	-5.86 - i1.84	-0.57 - i1.32	-31.79 + i0.06	-0.30 - i0.05
4910 76 + 30 98	g_i	0.02 + i0.01	-0.13 - i0.04	-0.02 + i0.00	6.35 + i0.00
4310.76 + i0.28	$g_i G_i^{II}$	-0.45 + i0.64	3.47 - i0.96	0.23 - i0.01	-31.95 - i0.05

TABLE XXI: The poles for Ω_{cc} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$ sector from $VB(\frac{3}{2}^{+})$.

Poles		$\Omega_{cc}^*\omega$	$\Xi_{cc}^* \bar{K}^*$	$\Xi_c^* D^*$
4446.59	g_i $g_i G_i^{II}$	$1.59 \\ -16.03$	$3.93 \\ -35.31$	$2.64 \\ -9.69$
4520.38	g_i $g_i G_i^{II}$	-0.18 2.78	$-0.94 \\ 12.44$	$\begin{array}{c} 6.10 \\ -29.41 \end{array}$

TABLE XIX: The poles for Ω_{cc} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{1}{2}^{-}, \frac{3}{2}^{-}$ sector from $VB(\frac{1}{2}^{+})$.

Poles		$\Xi_c D^*$	$\Omega_{cc}\omega$	$\Xi_{cc}\bar{K}^*$	$\Xi_c' D^*$
4999 86	g_i	6.51	-0.70	-1.35	-0.07
4332.00	$g_i G_i^{II}$	-29.78	5.66	9.74	0.23
4405 47	g_i	1.27	1.41	3.81	0.83
4400.47	$g_i G_i^{II}$	-8.44	-15.17	-35.89	-3.33
4446-90	g_i	-0.08	-0.32	-0.24	6.58
4440.29	$g_i G_i^{II}$	0.73	4.34	2.81	-30.80

TABLE XXII: The poles for Ω_{bb} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{1}{2}^-$ sector from $PB(\frac{1}{2}^+)$.

Poles		$\Omega_{bb}\eta$	$\Xi_{bb}\bar{K}$	$\Xi_b \bar{B}$	$\Xi_b'\bar{B}$
10741.65	g_i	1.50	2.72	0	0
	$g_i G_i^{II}$	-25.56	-34.78	0	0
10864.15	g_i	0	0	11.87	0
10004.10	$g_i G_i^{II}$	0	0	-20.43	0
11001.63	g_i	0	0	0	11.87
	$g_i G_i^{II}$	0	0	0	-20.43

Ω_{QQ} states: Results

W. F. Wang, A. F., J. Song and E. Oset, arXiv:2208.14858 [hep-ph]

TABLE XXIII: The poles for Ω_{bb} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{1}{2}^{-}, \frac{3}{2}^{-}$ sector from $VB(\frac{1}{2}^{+})$.

Poles		$\Omega_{bb}\omega$	$\Xi_b \bar{B}^*$	$\Xi_{bb}\bar{K}^*$	$\Xi_b'\bar{B}^*$
10000 88	g_i	0	11.92	0	0
10909.00	$g_i G_i^{II}$	0	-20.35	0	0
11047.96	g_i	0	0	0	11.92
11047.50	$g_i G_i^{II}$	0	0	0	-20.34

TABLE XXVI: The poles for Ω_{bc} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{1}{2}^-$ sector from $PB(\frac{1}{2}^+)$.

-									
Poles		$\Xi_{bc}\bar{K}$	$\Xi_{bc}'\bar{K}$	$\Omega_{bc}\eta$	$\Omega_{bc}^{\prime}\eta$	$\Xi_b D$	$\Xi_c \bar{B}$	$\Xi_b'D$	$\Xi'_c \bar{B}$
7969 96	g_i	2.64	0	1.57	0	1.70	0	0	0
7302.20	$g_i G_i^{II}$	-40.41	0	-13.52	0	-5.35	0	0	0
7202 60	g_i	0	2.61	0	1.51	0	0	-0.73	0
1352.00	$g_i G_i^{II}$	0	-41.08	0	-12.83	0	0	1.81	0
7814 99 + 39 91	g_i	-0.14 - i0.27	0	-0.05 - i0.13	0	6.19 - i0.08	0	0	0
1514.52 + 12.21	$g_i G_i^{II}$	9.18 + i2.42	0	0.83 + i2.04	0	-32.11 + i0.12	0	0	0
7200 02	g_i	0	0	0	0	0	11.50	0	0
100.00	$g_i G_i^{II}$	0	0	0	0	0	-20.01	0	0
7641 20 + 32 26	g_i	0	-0.06 - i0.03	0	0.34 + i0.11	0	0	6.50 + i0.02	0
1041.20 + 12.20	$g_i G_i^{II}$	0	1.60 - i1.76	0	-10.29 + i2.74	0	0	-32.20 - i0.41	0
7674.29	g_i	0	0	0	0	0	0	0	11.53
	$g_i G_i^{II}$	0	0	0	0	0	0	0	-20.05

TABLE XXIX: The poles for Ω_{bc} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{3}{2}^-$ sector from $PB(\frac{3}{2}^+)$. TABLE XXIX: The poles for Ω_{bc} along with their coupling constants (in units of MeV) to various channels in the $J^P = \frac{1}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-$ sector from $VB(\frac{3}{2}^+)$.

Poles		$\Xi_{bc}^* \bar{K}$	$\Omega_{bc}^*\eta$	$\Xi_b^* D$	$\Xi_c^* \bar{B}$
7/15 55	g_i	2.63	1.56	1.21	0
7410.00	$g_i G_i^{II}$	-40.83	-13.37	-3.05	0
7667 65 + 31 40	g_i	-0.02 - i0.20	0.02 - i0.06	6.25 - i0.05	0
1001.05 + 11.40	$g_i G_i^{II}$	6.82 + i0.98	0.53 + i1.88	-32.26 + i0.09	0
7740.03	g_i	0	0	0	11.52
1140.30	$g_i G_i^{II}$	0	0	0	-20.08

-						
	Poles		$\Omega_{bc}^*\omega$	$\Xi_{bc}^* \bar{K}^*$	$\Xi_b^* D^*$	$\Xi_c^* \overline{B}^*$
	7790 11	g_i	1.60	3.82	3.54	0
	1123.11	$g_i G_i^{II}$	-15.96	-33.56	-12.92	0
	7786 71	g_i	0	0	0	11.61
	1100.11	$g_i G_i^{II}$	0	0	0	-19.99
	7811 89	g_i	-0.23	-1.24	5.71	0
	1011.02	$g_i G_i^{II}$	3.72	16.77	-28.48	0

Ω_{QQ} states: Summary

We have studied Ω_{cc} , Ω_{bc} and Ω_{bb} molecular states arising from the meson-baryon interaction with different J^P within an extension of the hidden gauge approach.

•
$$(C = 2, S = -1, I = 0)$$
 sector
 $PB(\frac{1}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
• $(B = -2, S = -1, I = 0)$ sector
 $PB(\frac{1}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}$
 $PB(\frac{1}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 2$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 2$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 6$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 6$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 6$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{3}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$
 $VB(\frac{1}{2}^{+}): 6$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$
 $VB(\frac{3}{2}^{+}): 3$ states, $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$

Experimental outputs for these sectors are expected to be provided by LHCb in 2y approx.

Thank you for your attention!

