CAN THE TWO-POLE STRUCTURE OF THE $D_{0}^{*}(2300)$ BE UNDERSTOOD FROM RECENT LATTICE DATA?

June 8, 2023 | Anuvind Asokan | IAS Forschungszentrum Jülich

Introduction

- Quark model mesons
\Longrightarrow quark-anti-quark bound states
- Positive parity c-s scalar($\left.D_{s 0}^{*}(2317)\right)$ and axial vector $\left(D_{s 1}(2460)\right)$ much lighter than the quark model prediction
- SU(3) partners: observed as broad bumps in the $D \pi$ and $D^{*} \pi$ invariant mass in B decays \rightarrow $D_{0}^{*}(2300)$ and $D_{1}(2430)$

Masses almost equal to the strange counter parts
however, various UChPT studies find two D_{0}^{*} mesons and two D_{1} mesons in the energy region of $D_{0}^{*}(2300)$ and $D_{1}(2430)$ respectively

- Two pole picture solves the $\mathrm{SU}(3)$ mass peculiarity
- The two D_{0}^{*} poles are located at $2105_{-8}^{+6}-i 102_{-11}^{+10}$ and $2451_{-25}^{+35}-i 134_{-8}^{+7}$
- Lower one $\mathrm{SU}(3)$ partner of $D_{s 0}^{*}(2317)$
M.Du et al.,PhysRevD.98.094018,L.Liu et al.,PhysRevD.87.014508..
- Amplitudes consistent with the LHCb data of the three body B meson decays
- But lattice QCD study of $D \pi-D \eta-D_{s} \bar{K}$ by HadSpec reported only one pole below the $D \pi$ threshold at
 $m_{\pi}=391 \mathrm{MeV}$

Amplitudes from the lattice study

K-matrix parametrisation of the kind

$$
K_{i j}=\frac{\left(g_{i}^{(0)}+g_{i}^{(1)} s\right)\left(g_{j}^{(0)}+g_{j}^{(1)} s\right)}{m^{2}-s}+\gamma_{i j}^{(0)}+\gamma_{i j}^{(1)} s,
$$

With T-matrix

$$
T_{K}(s)_{i j}=\frac{1}{K^{-1}(s)_{i j}+\left(l_{\mathrm{CM}}^{(i)}(s)-l_{\mathrm{CM}}^{(i)}\left(m^{2}\right)\right) \delta_{i j}},
$$

where Chew-Mandelstam function given by

$$
l_{\mathrm{CM}}^{(i)}(s)=\frac{\rho_{i}(s)}{\pi} \log \left[\frac{\xi_{i}(s)+\rho_{i}(s)}{\xi_{i}(s)-\rho_{i}(s)}\right]-\frac{\xi_{i}(s)}{\pi} \frac{m_{2}^{(i)}-m_{1}^{(i)}}{m_{1}^{(i)}+m_{2}^{(i)}} \log \frac{m_{2}^{(i)}}{m_{1}^{(i)}},
$$

$\rightarrow 9$ different amplitudes with different parameters

Riemann Sheet

- Branch cuts at every channel opening
- Sign of $\operatorname{Im}\left(p_{c m}\right)$ used to label the sheets
- Poles correspond to bound states or resonances
- Poles given by zeros of

$$
\operatorname{det}\left(K^{-1}(s)+\left(I_{\mathrm{CM}}(s)-I_{\mathrm{CM}}\left(m^{2}\right)\right)\right)=0
$$

- Crossing from the physical sheet done by adding the discontinuity across the branch cut
- Discontinuity related to imginary part of T-matrix by Schwartz reflection principle

$$
\begin{aligned}
\operatorname{Disc}\left[T_{K}(s)\right] & =T_{K}(s+i \epsilon)-T_{K}(s-i \epsilon) \\
& =2 i \operatorname{Im}\left[T_{K}(s+i \epsilon)\right]
\end{aligned}
$$

Hidden sheet poles \Longrightarrow

Pole Search

- At $m_{\pi}=391 \mathrm{MeV}$, lowest pole bound state
- found in all nine parametrizations employed by HadSpec
- Second pole RS211, RS221, and RS222 for almost all parametrizations but
- they scatter very much
- also in part located outside fitted region
- Clear correlation between real and imaginary part of the poles
- Extracted pole from the UChPT analysis in line
- Poles located on hidden sheets

Residues

- Poles characterized by its location and residue
- residue quantifies the couplings of resonances to the various channels given by

$$
R_{i j}=\lim _{s \rightarrow s_{p}}\left(s-s_{p}\right) T_{i j}(s) .
$$

- With the effective coupling is given by

$$
g_{i}^{r}=R_{i j} / \sqrt{R_{j j}}
$$

Residue and Threshold Distance

- Effects of hidden pole on physical axis visible at threshold only
- We quantified the distance as

$$
\text { Dist }=M-M_{t h r}
$$

to avoid double counting the effect of the couplings

- Effects of poles at threshold encoded in the y-intercept well constrained
- Next step: A parametrization to better constraint the location of the higher pole

SU(3) Symmetry

- $[\overline{3}] \otimes[8]=[\overline{1}] \oplus[6] \oplus[\overline{3}]$
- $\operatorname{SU}(3)$ flavor to isospin basis relation:

$$
\left(\begin{array}{l}
|[\overline{3}]\rangle \\
|[6]\rangle \\
|[15]\rangle
\end{array}\right)=U\left(\begin{array}{c}
|D \pi\rangle \\
|D \eta\rangle \\
\left|D_{s} \bar{K}\right\rangle
\end{array}\right)
$$

- where

$$
U=\left(\begin{array}{ccc}
-3 / 4 & -1 / 4 & -\sqrt{3 / 8} \\
\sqrt{3 / 8} & -\sqrt{3 / 8} & -1 / 2 \\
1 / 4 & 3 / 4 & -\sqrt{3 / 8}
\end{array}\right)
$$

SU(3) Symmetry

Form for K-matrix:

$$
K=\left(\frac{g_{\overline{3}}^{2}}{m_{\overline{3}}^{2}-s}+c_{\overline{3}}\right) C_{\overline{3}}+\left(\frac{g_{6}^{2}}{m_{6}^{2}-s}+c_{6}\right) C_{6}+c_{\overline{15}} C_{\overline{15}}
$$

the two bare poles are assumed to be in the two $\mathrm{SU}(3)$ multiplets with S -wave attractions from LO chiral dynamics

No. of parameters: 5-7

- [15] was found to be repulsive
- T matrix as before
- Subtraction point for Chew-Mandelstam chosen to be $m_{\overline{3}}$

Fitting to Lattice energy Levels

Finite volume T-matrix related to continuum T by

$$
\tilde{T}(s)=\frac{1}{T^{-1}(s)-\Delta G(s)}
$$

with

$$
\Delta G_{i i}=\tilde{G}_{i i}(s)-G_{i j}(s)
$$

$\tilde{G}_{i j}(s)$ and $G_{i i}(s)$ two meson loop functions in the finite volume and continuum respectively. The lattice energy levels correspond the zeros of the determinant of \tilde{T}^{-1}

Fit Results to all Levels

- Fits done to all energy levels in lattice rest frame
- In our best fit fixed $g_{6}=0$ to omit the explicit pole term of [6] (and thus m_{6} is absent).
- χ^{2} comparable to the HadSpec amplitudes for the lattice rest frame

\mid Amplitude $\left.\right|^{2}$ Plot

-Shown

- $D \pi-D \pi$
- $D \eta-D \eta$
- $D_{s} \bar{K}-D_{s} \bar{K}$
- Lower pole found as bound state same as HadSpec Amplitudes

$$
2274.8_{-0.6}^{+0.6} \mathrm{MeV}
$$

- Higher pole found at

$$
2516_{-60}^{+71}-479_{-50}^{+38} i \mathrm{MeV}
$$

Pole Location comparison

- HadSpec poles shown in yellow
- SU(3) constrained pole
- When fitting to all energy levels in rest frame
- When fitting to the lowest four levels in each volume
- UChPT pole shown in green

Summary

- Various UChPT studies find the experimental structures to be interplay of two D_{0}^{*} poles
- Seemingly in contradiction the Lattice study reports one pole
- But we find additional poles on the unphysical sheets in the lattice amplitudes
- They scatter wildly with, their effects on amplitude comparable, because they are located on hidden sheets

> distance from threshold balanced by residue

- To extract the location of higher pole from the lattice data we propose use of a SU(3) flavor constrained amplitude

Thank you very much for your attention.

Back Up

June 8, 2023

relative strengths

$$
\begin{aligned}
& C_{\overline{3}}=\left(\begin{array}{c}
-3 / 4 \\
-1 / 4 \\
-\sqrt{3 / 8}
\end{array}\right)\left(\begin{array}{lll}
-3 / 4 & -1 / 4 & -\sqrt{3 / 8}
\end{array}\right) \\
& =\frac{3}{8}\left(\begin{array}{ccc}
3 / 2 & 1 / 2 & \sqrt{3 / 2} \\
1 / 2 & 1 / 6 & \sqrt{1 / 6} \\
\sqrt{3 / 2} & \sqrt{1 / 6} & 1
\end{array}\right) \text {, } \\
& C_{\overline{15}}=\left(\begin{array}{c}
1 / 4 \\
3 / 4 \\
-\sqrt{3 / 8}
\end{array}\right)\left(\begin{array}{lll}
1 / 4 & 3 / 4 & -\sqrt{3 / 8}
\end{array}\right) \\
& C_{6}=\left(\begin{array}{c}
\sqrt{3 / 8} \\
-\sqrt{3 / 8} \\
-1 / 2
\end{array}\right)\left(\begin{array}{lll}
\sqrt{3 / 8} & -\sqrt{3 / 8} & -1 / 2
\end{array}\right) \\
& =\frac{3}{8}\left(\begin{array}{cc}
1 / 6 & 1 / 2 \\
1 / 2 & 3 / 2 \\
-\sqrt{1 / 6} & -\sqrt{3 / 2}
\end{array}\right. \\
& \left.\begin{array}{c}
-\sqrt{1 / 6} \\
-\sqrt{3 / 2} \\
1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ccc}
3 / 4 & -3 / 4 & -\sqrt{3 / 8} \\
-3 / 4 & 3 / 4 & \sqrt{3 / 8} \\
-\sqrt{3 / 8} & \sqrt{3 / 8} & 1 / 2
\end{array}\right) \text {, }
\end{aligned}
$$

Sheet labels

Table: The notation of the Riemann sheets with the sign of the imaginary part of the c.m. momentum of each channel.

Riemann sheet	Sign of imaginary part of channel momentum		
RS111	$\operatorname{Im}\left(p_{1}\right)>0$	$\operatorname{Im}\left(p_{2}\right)>0$	$\operatorname{Im}\left(p_{3}\right)>0$
RS211	$\operatorname{Im}\left(p_{1}\right)<0$	$\operatorname{Im}\left(p_{2}\right)>0$	$\operatorname{Im}\left(p_{3}\right)>0$
RS221	$\operatorname{Im}\left(p_{1}\right)<0$	$\operatorname{Im}\left(p_{2}\right)<0$	$\operatorname{Im}\left(p_{3}\right)>0$
RS222	$\operatorname{Im}\left(p_{1}\right)<0$	$\operatorname{Im}\left(p_{2}\right)<0$	$\operatorname{Im}\left(p_{3}\right)<0$
RS121	$\operatorname{Im}\left(p_{1}\right)>0$	$\operatorname{Im}\left(p_{2}\right)<0$	$\operatorname{Im}\left(p_{3}\right)>0$
RS112	$\operatorname{Im}\left(p_{1}\right)>0$	$\operatorname{Im}\left(p_{2}\right)>0$	$\operatorname{Im}\left(p_{3}\right)<0$
RS212	$\operatorname{Im}\left(p_{1}\right)<0$	$\operatorname{Im}\left(p_{2}\right)>0$	$\operatorname{Im}\left(p_{3}\right)<0$
RS122	$\operatorname{Im}\left(p_{1}\right)>0$	$\operatorname{Im}\left(p_{2}\right)<0$	$\operatorname{Im}\left(p_{3}\right)<0$

HadSpec Parametrizations

Parametrization	m	$g_{i}^{(0)}$			$g_{i}^{(1)}$			$\gamma_{i j}^{(0)}$						$\gamma_{i j}^{(1)}$						$\chi^{2} /$ dof
		1	2	3	1	2	3	11	12	13	22	23	33	11	12	13	22	23	33	
Amplitude 1	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	1.76
Amplitude 2	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	-	-	1.71
Amplitude 3	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark	-	-	-	-	-	-	1.76
Amplitude 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	1.78
Amplitude 5	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark	1.89
Amplitude 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark	-	\checkmark	-	-	-	-	-	-	1.63
Amplitude 7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	1.68
Amplitude 8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	-	-	-	-	-	1.68
Amplitude 9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark	-	-	-	-	-	-	1.66

Poles from Fits

Table: The pole locations from the different fits.

Fits	RS 111	RS 211	RS 221	RS 222
Fit 1_4L	$2275.1_{-0.6}^{+0.6}-0 i$	$2515_{-18}^{+146}-23_{-111}^{+16} i$	$2476_{-109}^{+136}-253_{-120}^{+225} i$	$2544_{-47}^{+143}-18_{-66}^{+18} i$
Fit 2_4L	$2274.5_{-0.7}^{+0.8}-0 i$	$2498_{-10}^{+9}-20_{-6}^{+7} i$	$2503_{-13}^{+12}-42_{-22}^{+19} i$	$2518_{-21}^{+19}-63_{-44}^{+31} i$
Fit 3_3L	$2275.1_{-0.6}^{+0.6}-0 i$	$2512_{-67}^{+22}-50_{-20}^{+37} i$	$2479_{-50}^{+41}-128_{-38}^{+103} i$	$2571_{-135}^{+200}-314_{-84}^{+265} i$
Fit 4_4L	$2275.3_{-0.6}^{+0.6}-0 i$	$2518_{-17}^{+28}-92_{-28}^{+18} i$	$2407_{-40}^{+59}-241_{-50}^{+43} i$	$2673_{-44}^{+94}-61_{-47}^{+19} i$
Fit 4_All	$2274.8_{-0.6}^{+0.6}-0 i$	$2681_{-33}^{+46}--263_{-51}^{+43} i$	$2516_{-60}^{+71}-479_{-50}^{+38} i$	$3123_{-99}^{+144}-359_{-162}^{+86} i$

Fit parameters

Table: The best fit values arrived in Fit4_4L and Fit4_all, along with their $\chi^{2} /$ dof. The symbol ' $-{ }^{\prime}$ ' is used for parameters set to zero (or absent) in the particular fit.

	$g_{3}[\mathrm{GeV}]$	$m_{\overline{3}}[\mathrm{MeV}]$	$g_{6}[\mathrm{GeV}]$	$m_{6}[\mathrm{MeV}]$	$c_{\overline{3}}$	c_{6}	$c_{\overline{15}}$	χ^{2}
Fit 4_4L	3.16 ± 0.38	2275.3 ± 0.6	-	-	5 ± 2	1.0 ± 0.2	-0.4 ± 0.2	8.2
Fit 4_All	2.4 ± 0.2	2274.8 ± 0.6	-	-	1.1 ± 0.4	0.54 ± 0.06	-0.26 ± 0.09	29.6

Residue vs Threshold fit4_4L and fit4_All levels

Sheet Transition

$$
\begin{gather*}
T_{K, X}^{-1}(s)=T_{K}^{-1}(s)+\operatorname{Disc}_{X}\left[T_{K}^{-1}(s)\right], \tag{1}\\
\operatorname{Disc}_{211} T_{K}^{-1}=2 i\left[\begin{array}{rrr}
-\rho_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \tag{2}\\
\operatorname{Disc}_{221} T_{K}^{-1}=2 i\left[\begin{array}{rrr}
-\rho_{1} & 0 & 0 \\
0 & -\rho_{2} & 0 \\
0 & 0 & 0
\end{array}\right] . \tag{3}
\end{gather*}
$$

