Renormalization in various schemes of nucleon-nucleon chiral EFT

A. M. Gasparyan, Ruhr-Universität Bochum
in collaboration with E. Epelbaum

June 9, HADRON 2023, Genova

Outline

\rightarrow Explicit renormalization in an EFT: motivation
\rightarrow Perturbative regime
\rightarrow Nonperturbative regime: finite and infinite cut off schemes
$\rightarrow 1 / \mathrm{r}^{2}$ potential, as a toy-model example
\rightarrow Summary

Motivation

Explicit renormalization of an EFT in the presence of nonperturbative effects
Heavy quarkonia EFT calculations
Pion-less nuclear EFT
Chiral nuclear EFT,...
Nontrivial issues arise when going beyond leading order

Renormalization of EFT: Motivation. Example of NN

"Perturbative" calculation of the S-matrix, spectrum, etc.
Expansion parameter: (soft scale)/(hard scale) $Q=\frac{q}{\Lambda_{b}} q \in\left\{|\vec{p}|, M_{\pi}\right\}, \quad \Lambda_{b} \sim M_{\rho}$
$\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{N N}^{(0)}+\mathcal{L}_{N N}^{(2)}+\ldots$
Contains bare parameters (LEC's) $\quad C_{i}=C_{i}^{r}+\delta C_{i}$
Counter terms δC_{i} absorb divergent and power-counting breaking contributions
Renormalization: power counting and expansion in terms of renormalized quantities C_{i}^{r}

Explicit renormalization of nuclear chiral EFT is complicated by non-perturbative effects.

Power counting for NN chiral EFT

Weinberg, S., NPB363, 3 (1991)

V_{2} is treated perturbatively to have the expansion of the amplitude under control

Regularization

The unregularized amplitude is divergent:
\longrightarrow Regulator: cutoff \wedge
LO: $T_{0}=V_{0}+V_{0} G V_{0}+V_{0} G V_{0} G V_{0}+\cdots=\sum_{n=0}^{\infty} T_{0}^{[n]}, \quad T_{0}^{[n]} \sim \Lambda^{n}$
NLO: $T_{2}=\sum_{m, n=0}^{\infty}\left(V_{0} G\right)^{m} V_{2}\left(G V_{0}\right)^{n}=\sum_{m, n=0}^{\infty} T_{2}^{[m, n]}, \quad T_{2}^{[m, n]} \sim \Lambda^{m+n+2}$

Positive powers of \wedge violate the power counting even if we keep \wedge finite

One needs an infinite number of counter terms to absorb them

Power counting restoration. Perturbative analysis. Finite cutoff (of the order of the hard scale).

Perturbative: the series in V_{0} is convergent, but the number of iterations is not restricted

$$
\text { LO: } T_{0}^{[n]}=V_{0}\left(G V_{0}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right)
$$

Expectation: $\Lambda \approx \Lambda_{b}: \int \frac{p^{n-1} d p}{\left(\Lambda_{\mathrm{V}}\right)^{n}} \sim\left(\frac{\Lambda}{\Lambda_{V}}\right)^{n} \sim\left(\frac{\Lambda_{b}}{\Lambda_{b}}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right)$
G. P. Lepage, nucl-th/9706029
J. Gegelia, JPG25, 1681 (1999)

NLO: $T_{2}^{[m, n]}=\left(V_{0} G\right)^{m} V_{2}\left(G V_{0}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right) \neq \mathcal{O}\left(Q^{2}\right)$

Power-counting violating contributions from large loop momenta: $p \sim \Lambda, p^{\prime} \sim \Lambda$ in $V_{2}\left(p^{\prime}, p\right)$

Expectation:power-counting breaking contributions can be absorbed by lower order contact (counter) terms

> Renormalization in the spirit of
> Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) procedure to all orders in V_{0} :

> AG, E.Epelbaum, PRC 105, 024001 (2022) subtractions in all nested subdiagrams.

Renormalization at NLO in the nonperturbative case (simplified)

Distorted wave Born approximation:
$\mathbb{R}\left(T_{2}\right)(p)=T_{2 ; \text { long }}(p)+C_{0} \psi_{p}(r \approx 0)^{2}+C_{2} \psi_{p}(r \approx 0) \psi_{p}^{\prime}(r \approx 0)+\ldots$

$$
\psi_{p}(r \approx 1 / \Lambda \approx 0)=1+<\mathrm{T}_{0} \quad \psi_{p}^{\prime}(r \approx 0)=\mathrm{p}^{2}+\square \mathrm{T}_{0}
$$

C_{i} are fixed, e.g., by renormalization conditions at momenta p_{i}

$$
\operatorname{det}\left(p_{1}, p_{2}\right)=\left|\begin{array}{ll}
\psi_{p_{1}}(0) & \psi_{p_{1}}^{\prime}(0) \\
\psi_{p_{2}}(0) & \psi_{p_{2}}^{\prime}(0)
\end{array}\right|=0 \longmapsto C_{0}, C_{2}=\infty
$$

Destroys renormalizability if $\quad \operatorname{det}\left(p_{1}, p_{3} \neq p_{2}\right) \neq 0 \quad$ (zero is not factorizable)
Typical situation for singular attractive interactions. Wave functions oscillate close to $r=0$

Renormalizability constraints on (the short-range part of) the LO potential.
The simplest formulation: LECs must be of natural size (If $\Lambda \sim \Lambda_{b}$).

Infinite cutoff $\left(\wedge \gg \wedge_{b}\right)$ scheme, "RG invariant"

$\Lambda \rightarrow \infty:$
Cutoff independence for each EFT order individually!

All positive powers of \wedge cancel:
A. Nogga, R. Timmermans,
U. van Kolck, PRC72, 054006 (2005)
M.P. Valderrama, PRC84, 064002 (2011)
B. Long, C. Yang, PRC84, 057001 (2011)

$$
T \approx 1+\Lambda+\Lambda^{2}+\cdots=\frac{1}{1-\Lambda}
$$

Motivation: singular potentials in quantum mechanics

$$
\sim 1 / r^{n}, \quad n \geq 2
$$

W. Frank, D. J. Land and R. M. Spector, Rev. Mod. Phys. 43, 36 (1971)

Seems to work for the LO amplitude

NN scattering for in the infinite cutoff scheme at NLO. ${ }^{3} P_{0}$ partial wave.

Scheme of Long and Yang:

B. Long, C. J. Yang, PRC84, 057001 (2011)
$V^{(2)}\left(p^{\prime}, p\right)=V_{2 \pi}\left(p^{\prime}, p\right)+C_{0}^{(2)}(\Lambda) p^{\prime} p+C_{2}^{(2)}(\Lambda) p^{\prime} p\left(p^{2}+p^{\prime 2}\right)$
Perturbative NLO: $T^{(2)}=\left[\mathbb{1}+T^{(0)} G\right] V^{(2)}\left[\mathbb{1}+G T^{(0)}\right] \quad \begin{aligned} & \text { (avoiding pathologies due to } \\ & \text { repulsive singular interaction) }\end{aligned}$

NN scattering for in the infinite cutoff scheme at NLO. ${ }^{3} P_{0}$ partial wave.

Scheme of Long and Yang:

B. Long, C. J. Yang, PRC84, 057001 (2011)
$V^{(2)}\left(p^{\prime}, p\right)=V_{2 \pi}\left(p^{\prime}, p\right)+C_{0}^{(2)}(\Lambda) p^{\prime} p+C_{2}^{(2)}(\Lambda) p^{\prime} p\left(p^{2}+p^{\prime 2}\right)$
Perturbative NLO: $T^{(2)}=\left[\mathbb{1}+T^{(0)} G\right] V^{(2)}\left[\mathbb{1}+G T^{(0)}\right]$
(avoiding pathologies due to repulsive singular interaction)

NN scattering for in the infinite cutoff scheme at NLO. ${ }^{3} \mathrm{P}$ o partial wave.

Scheme of Long and Yang:
B. Long, C. J. Yang, PRC84, 057001 (2011)
$V^{(2)}\left(p^{\prime}, p\right)=V_{2 \pi}\left(p^{\prime}, p\right)+C_{0}^{(2)}(\Lambda) p^{\prime} p+C_{2}^{(2)}(\Lambda) p^{\prime} p\left(p^{2}+p^{2}\right)$
Perturbative NLO: $T^{(2)}=\left[\mathbb{1}+T^{(0)} G\right] V^{(2)}\left[\mathbb{1}+G T^{(0)}\right]$
(avoiding pathologies due to repulsive singular interaction)

${ }^{3}{ }^{3}$ o phase shifts. Energy dependence.

"Exceptional" cutoff $\bar{\Lambda} \approx 12 \mathrm{GeV}$

${ }^{3}{ }^{3}$ o phase shifts. Energy dependence.

"Exceptional" cutoff $\bar{\Lambda} \approx 12 \mathrm{GeV}$

${ }^{3} P_{0}$ phase shifts. Energy dependence.

"Exceptional" cutoff $\bar{\Lambda} \approx 12 \mathrm{GeV}$

$1 / \mathrm{r}^{2}$ potential

Frequently used as the toy model example

Analytically solvable in many cases (scaleless)

Similar short-range behaviour in pionless EFT, 3N system

For pure $1 / \mathrm{r}^{2}$ LO potential, $1 / \mathrm{r}^{4}$ NLO potential and the sharp cutoff regularization, There appear no "exceptional" cutoffs (factorization)

```
B. Long, U. van Kolck,
Annals Phys. 323, 1304 (2008)
AG, E.Epelbaum, PRC107, 034001 (2023)
```


Unique situation.

Any slight modification of the potential (short- or long-range part) or of a regulator leads to appearance of "exceptional" cutoffs

Summary

\checkmark Renormalization of an (e.g. NN chiral) EFT in the nonperturbative regime beyond leading order imposes constraints on the renormalization scheme, i.e., on a choice of the LO interaction
\checkmark As a consequence, in the infinite cutoff schemes, renormalization beyond LO does not work: "exceptional" cutoffs
\checkmark These findings are also relevant for other systems. However, simple toy models such as $1 / r^{2}$ potential might miss some key issues.

