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MotivationMotivation

Explicit renormalization of an EFT in the presence of nonperturbative effects 

Pion-less nuclear EFT

Chiral nuclear EFT,...

Heavy quarkonia EFT calculations

Nontrivial issues arise when going beyond leading order



Renormalization of EFT: Motivation. Example of NNRenormalization of EFT: Motivation. Example of NN

“Perturbative” calculation of the S-matrix, spectrum, etc.

Expansion parameter: (soft scale)/(hard scale)

Contains bare parameters (LEC’s)

Renormalization: power counting and expansion in terms of renormalized quantities     

Explicit renormalization of nuclear chiral EFT is complicated by non-perturbative effects.

Counter terms          absorb divergent and power-counting breaking contributions 



Power counting for NN chiral EFT Power counting for NN chiral EFT 
Weinberg, S., NPB363, 3 (1991) 

V
0

V
0 2N-reducible diagrams are enhanced: V0 must be iterated

V2 is treated perturbatively to have the expansion of the amplitude under control



RegularizationRegularization

The unregularized amplitude is divergent:

Regulator: cutoff Λ

Positive powers of  Λ violate the power counting even if we keep Λ finite

One needs an infinite number of counter terms to absorb them



Power counting restoration. Perturbative analysis. Power counting restoration. Perturbative analysis. 
Finite cutoff (of the order of the hard scale).Finite cutoff (of the order of the hard scale).

G. P. Lepage, nucl-th/9706029
  J. Gegelia, JPG25, 1681 (1999)

AG, E.Epelbaum, PRC 105, 024001 (2022)

Perturbative: the series in V0 is convergent, but the number of iterations is not restricted

Power-counting violating contributions from large loop momenta:

Expectation:power-counting breaking contributions 
can be absorbed by lower order contact (counter) terms

Renormalization in the spirit of
 Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) procedure 

to all orders in V0:
 subtractions in all nested subdiagrams.

Expectation:



Renormalization at NLO in the nonperturbative caseRenormalization at NLO in the nonperturbative case
(simplified)(simplified)

V
0

T
0=1+

Renormalizability constraints on (the short-range part of ) the  LO potential.
The simplest formulation: LECs must be of natural size (If              ).

Destroys renormalizability if

V
0

T
0=p2+

Typical situation for singular attractive interactions. Wave functions oscillate close to r=0 

(zero is not factorizable)

Ci are fixed, e.g., by renormalization conditions at momenta pi

AG, E.Epelbaum, PRC107, 044002 (2023)

Distorted wave Born approximation:



Infinite cutoff (Infinite cutoff (ΛΛ>>>>ΛΛbb) scheme, “RG invariant”) scheme, “RG invariant”

All positive powers of Λ cancel:

Motivation: singular potentials in quantum mechanics

A. Nogga, R. Timmermans, 
U. van Kolck, PRC72, 054006 (2005)
M.P. Valderrama, PRC84, 064002 (2011)
B. Long, C. Yang, PRC84, 057001 (2011)

W. Frank, D. J. Land and R. M. Spector, 
Rev. Mod. Phys. 43, 36 (1971)

Cutoff independence for each EFT order individually!

Seems to work for the LO amplitude



NN scattering for in the infinite cutoff scheme NN scattering for in the infinite cutoff scheme 
at NLO. at NLO. 33PP00 partial wave. partial wave.

B. Long, C. J. Yang, PRC84, 057001 (2011)

Perturbative NLO:

Scheme of Long and Yang:

(avoiding pathologies due to 
repulsive singular interaction)
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NN scattering for in the infinite cutoff scheme NN scattering for in the infinite cutoff scheme 
at NLO. at NLO. 33PP00 partial wave. partial wave.

“Exceptionial cutoffs” 

B. Long, C. J. Yang, PRC84, 057001 (2011)

Perturbative NLO:
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eV

AG, E.Epelbaum, PRC107, 034001 (2023)

Scheme of Long and Yang:

(avoiding pathologies due to 
repulsive singular interaction)



LO

NLO

Typical cutoff

“Exceptional” cutoff

33PP0 0 pphase shifts. Energy dependence. hase shifts. Energy dependence. 
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LO

NLO

Typical cutoff

“Exceptional” cutoff

Choosing different renormalization conditions
merely changes the location of “exceptional” cutoffs.

Renormalization fails.

33PP0 0 pphase shifts. Energy dependence. hase shifts. Energy dependence. 



1/r1/r22 potential potential

Frequently used as the toy model example

Similar short-range behaviour in pionless EFT, 3N system

Unique situation.
Any slight modification of the potential (short- or long-range part) or 

of a regulator leads to appearance of “exceptional” cutoffs

AG, E.Epelbaum, PRC107, 034001 (2023)

B. Long, U. van Kolck, 
Annals Phys. 323, 1304 (2008) 
AG, E.Epelbaum, PRC107, 034001 (2023)

Analytically solvable in many cases (scaleless)

For pure 1/r2 LO potential, 1/r4 NLO potential and the sharp cutoff regularization,
There appear no “exceptional” cutoffs (factorization)



SummarySummary

✔ Renormalization of  an  (e.g. NN chiral)  EFT in the nonperturbative regime
beyond leading order imposes constraints on the renormalization scheme, 
i.e., on a choice of the LO interaction

✔ As a consequence, in the infinite cutoff schemes, renormalization beyond 
LO does not work: “exceptional” cutoffs

✔ These findings are also relevant for other systems. 
However, simple toy models such as 1/r2  potential might miss some key 
issues.
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