

Lepton Flavour Universality tests using semileptonic b-hadron decays

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023)

Gaya Benane, on behalf of the LHCb collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France June 9th, 2023 Genova, Italy

Introduction

Lepton Flavor Universality

1

In the Standard Model (SM), the weak interactions towards three generations of leptons are identical.

$$\mathbf{w}_{-} = \mathbf{w}_{-} + \mathbf{w}_{-}$$

This assumption is known as Lepton Flavor Universality (LFU).

- New physics may be more sensible to the 3rd family
- · Need to cancel for theoretical uncertainties

Reason for measuring ratios of branching fractions.

To test the LFU, we measure:

• Charged current $b \rightarrow c \ell \nu_{\ell}$:

$$R(X_c) \equiv \frac{\mathcal{B}(X_b \to X_c \ \tau^+ \ \nu_{\tau})}{\mathcal{B}(X_b \to X_c \ \ell^+ \ \nu_{\ell})}$$

where:
$$X_b = B^0, B^+_{(c)}, B^0_s, \Lambda_b, \dots, X_c = D^{(*)}, J/\psi, D_s, \Lambda_c, \dots$$

- · Main contribution: Tree-level digaram
- Or $b \rightarrow s\ell\ell$ neutral transitions:

$$R(X_s) = \frac{\mathcal{B}(X_b \to X_s \ \mu^+ \mu^-)}{\mathcal{B}(X_b \to X_s \ e^+ e^-)}$$

where: $(X_b, X_s) = (B^0, K^{*0})$ or (B^+, K^+)

· Main SM contribution: Penguin or box diagrams

New Physics behind LFU violation?

There are three typical candidates to account for the R(D) and $R(D^*)$ anomalies:

- Leptoquarks [PRL 116, 081801, PRD 94, 115021, ...]
- Two-Higgs-doublet models [PRL 116, 081801, ...]
- Heavy vector bosons, *e.g. W*['] [JHEP 07 (2015) 142 1506.01705, ...]

LHCb experiment

- · Excellent vertex resolution
 - *xy*-plane: 10 40 μm
 - *z*-axis: 50 300 μm
 - τ^+ lifetime resolution 0.4 *ps*
- Particle identification efficiencies:
 - \sim 97% for μ, e
 - + $\sim 3\%$ pion misidentification
 - Good separation between π, K, p

$R(X_c)$ measurements at LHCb – Overview

LFU test using semileptonic decays ($b \to c \ell \nu_\ell)$

- Approximation needed for B reconstruction (due to missing neutrinos)
- Couple of background sources

Measurements with:

- a) **Hadronic** τ^+ decays: $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$
 - $R(D^*)$ (Run 1 and partial Run 2 data)
 - $R(\Lambda_c)$ (Run 1 data)

[PRL 120, 171802 (2018), PRD 97, 072013 (2018), PRL 128, 191803 (2022), arXiv:2305.01463]

- b) **Muonic** τ^- decays: $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$
 - $R(D^*), R(J/\psi)$ (Run 1 data)
 - $R(D)-R(D^*)$ (Run 1 data)

$R(X_c)$ measurements at LHCb – Overview

LFU test using semileptonic decays ($b \to c \ell \nu_\ell)$

- Approximation needed for B reconstruction (due to missing neutrinos)
- Couple of background sources

Measurements with:

a) **Hadronic**
$$\tau^+$$
 decays: $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$

- $R(D^*)$ (Run 1 and partial Run 2 data) \leftarrow This talk
- $R(\Lambda_c)$ (Run 1 data) \leftarrow This talk

[PRL 120, 171802 (2018), PRD 97, 072013 (2018), PRL 128, 191803 (2022), arXiv:2305.01463]

- b) **Muonic** τ^- decays: $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$
 - $R(D^*), R(J/\psi)$ (Run 1 data)
 - $R(D)-R(D^*)$ (Run 1 data) \leftarrow This talk

$R(D^*)$ measurements at LHCb - two complementary au decay channels

Hadronic τ^+ decay

- Measuring τ^+ decay **position** to suppress dominant backgrounds
- High purity sample
- Specific dynamics of $\tau^+
 ightarrow 3\pi^\pm ar{
 u}_ au$
- *R*(*X_c*) requires external inputs
- Lower statistics

$R(D^*)$ measurements at LHCb - two complementary au decay channels

Hadronic τ^+ decay

- Measuring τ^+ decay **position** to suppress dominant backgrounds
- High purity sample
- Specific dynamics of $\tau^+
 ightarrow 3\pi^\pm ar{
 u}_ au$
- $R(X_c)$ requires external inputs
- Lower statistics

- Direct measurement of $R(X_c)$
- High statistics
- Backgrounds from D^+ must be controlled well
- Sensitive to $D^{**}\mu^-\nu_\mu$

 $R(D^*)$ with hadronic au decays

$R(D^*)$ hadronic – methodology

$$R(D^{*}) = \frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})} = \underbrace{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}_{\mathcal{K}(D^{*})} \times \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})}}_{\text{External branching fractions}}$$
We measure:

$$\mathcal{K}(D^{*}) \equiv \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\mu^{-})}}_{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\mu^{-}\mu^{+})} = \underbrace{\frac{\mathcal{N}_{\text{sig}}}{\mathcal{N}_{\text{norm}}}}_{\mathcal{E}_{\text{sig}}} \underbrace{\frac{\mathcal{E}_{\text{norm}}}{\mathcal{B}(\tau^{+} \to 3\pi^{\pm}\overline{\nu}_{\tau}) + \mathcal{B}(\tau^{+} \to 3\pi^{\pm}(\pi^{0})\overline{\nu}_{\tau})}}_{\mathcal{B}(\tau^{+} \to 3\pi^{\pm}\overline{\nu}_{\tau}) + \mathcal{B}(\tau^{+} \to 3\pi^{\pm}(\pi^{0})\overline{\nu}_{\tau})}$$

6

$R(D^*)$ hadronic – methodology

$$R(D^{*}) = \frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})} = \underbrace{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}_{\mathcal{K}(D^{*})} \times \underbrace{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}_{\text{External branching fractions}} \times \underbrace{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}_{\text{External branching fractions}}$$
We measure:

$$\mathcal{K}(\mathcal{D}^{*}) \equiv \frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\nu_{\tau})} = \frac{\underbrace{N_{\text{sig}}}_{\text{Form}}}{\underbrace{\mathcal{E}_{\text{sig}}}} \underbrace{\underbrace{\mathcal{E}_{\text{norm}}}_{\mathcal{B}(\tau^{+} \to 3\pi^{\pm}\overline{\nu}_{\tau}) + \mathcal{B}(\tau^{+} \to 3\pi^{\pm}(\pi^{0})\overline{\nu}_{\tau})}^{1}$$

• N_{sig} from a 3D binned template fit:

- $q^2 = (p_B p_{D^*})^2$ momentum transfered to the leptonic system (8 bins),
- τ^+ lifetime t_{τ} (8 bins),
- Anti- D_s^+ BDT (6 bins).
- N_{norm} from an unbinned fit to $m(D^* 3\pi^{\pm})$
- Efficiences ε_{sig} and ε_{norm} extracted from MC samples

Signal & Normalisation mode

- · Same final states in signal and normalisation modes
- · Signal mode partially reconstructed
 - Missing neutrinos

- Normalisation mode fully reconstructed
- · Helps to cancel out systematic uncertainties

$R(D^*)$ with hadronic au decays – Background

- The most dominant background is the prompt decay $B \rightarrow D^{*-} 3\pi^{\pm} X$
 - The $3\pi^{\pm}$ directly from *B* meson
 - Around \sim 100 \times signal decays
- The second largest contribution from double charm decays $B \rightarrow D^{*-}DX$
 - $D = D_s^+, D^+, D^0$
 - Signal like topology with a detached vertex due to non-negligible lifetime
 - $B \rightarrow D^{*-}D_s^+X \sim 10 \times$ signal decays

- Detachment criteria: $B \to D^{*-} 3\pi^{\pm} X$ suppressed by requiring the τ vertex to be *downstream* w.r.t. the **B** vertex along the beam direction
- A BDT classifier is used along with the vertex separation variables $\Rightarrow background\ rejection > 99\ \%$

• Detachment criteria: $B \to D^{*-} 3\pi^{\pm} X$ suppressed by requiring the τ vertex to be *downstream* w.r.t. the **B** vertex along the beam direction

- A BDT classifier is used along with the vertex separation variables
 ⇒ background rejection > 99 %
- Another BDT classifier based on kinematics and resonant structure to separate signal from $B \rightarrow D^{*-}D_s^+X$
 - This BDT output is one of the fit variables

- $B \to D^{*-}D_s^+X$ decays produced in a spectrum of $B \to D^{*-}D_s^{+(*,**)}X$ processes
- Rare knowledge about the fraction of each process
- Enriched data sample of double charm decays with fully reconstructed $D_s^+ \rightarrow 3\pi^\pm$ process
- Fit to $m(D^{*-}3\pi)$
- Fractions of each component determined and used as constraints in the signal extraction fit
- Projections of data and simulations on the fit variables shows a good agreement

Decays of D_s^+ **in** $B \to D^{*-}D_s^+X$

- $D_s^+ \rightarrow 3\pi^\pm X$ branching fractions not all well known and/or correctly simulated
- Data sample selected using D_s^+ BDT output
- Simultaneous fit to $m(\pi^+\pi^-)_{\min}, m(\pi^+\pi^-)_{\max}, m(\pi^+\pi^+)$ and $m(3\pi^\pm)$

· The fractions of various modes extracted and simulation corrected accordingly

Signal & normalisation fit results

• Normalisation yield from a fit to $m(D^{*-}3\pi^{\pm})$:

- Signal yield from a 3D-binned template fit:
 - $q^2 \equiv (p_{B^0} p_{D^*})^2$
 - τ^+ lifetime
 - Anti- D_s^+ BDT output

 $N_{B^0 \to D^{*-} \tau^+ \nu_{\tau}} = 2469 \pm 154$

(Run 1: $N_{B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}}$ = 1296 ± 86)

[arXiv:2305.01463]

Larger dataset and improved selection with respect to Run1 with hadronic au^+ analysis

Dominant sources of systematics are

- · Signal and background modelling
- Selection criteria on $B^0 \to D^{*-} \tau^+ \nu_\tau$ and $B^0 \to D^{*-} 3 \pi^\pm$ decay modes
- Limited size of the simulation samples
- · Empty bins in the templates

Source	Systematic uncertainty on $\mathcal{K}(D^{*})$ (%)
PDF shapes uncertainty (size of simulation sample)	2.0
Fixing $B \rightarrow D^* - D_s^+(X)$ bkg model parameters	1.1
Fixing $B \rightarrow D^* - D^0(X)$ bkg model parameters	1.5
Fractions of signal $ au^+$ decays	0.3
Fixing the $\overline{D}^{**} \tau^+ \nu_{\tau}$ and $D_s^{**+} \tau^+ \nu_{\tau}$ fractions	+1.8 - 1.9
Knowledge of the $D_{s_1}^+ \rightarrow 3\pi X$ decay model	1.0
Specifically the $D_s^+ \rightarrow a_1 X$ fraction	1.5
Empty bins in templates	1.3
Signal decay template shape	1.8
Signal decay efficiency	0.9
Possible contributions from other $ au^+$ decays	1.0
$B \rightarrow D^* - D^+(X)$ template shapes	+2.2
$B \rightarrow D^* - D^0(X)$ template shapes	1.2
$B \rightarrow D^* - D_s^+(X)$ template shapes	0.3
$B \rightarrow D^* - 3\pi X$ template shapes	1.2
Combinatorial background normalisation	+0.5 -0.6
Preselection efficiency	2.0
Kinematic reweighting	0.7
Vertex error correction	0.9
PID efficiency	0.5
Signal efficiency (size of simulation sample)	1.1
Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0
Normalisation efficiency (size of simulation sample)	1.1
Normalisation mode PDF choice	1.0
Total systematic uncertainty	+6.2 -5.9
Total statistical uncertainty	5.9

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3 \pi^{\pm})} = 1.700 \pm 0.101(\text{stat})^{+0.105}_{-0.100}(\text{syst})$$

We measure the absolute branching fraction of $B^0 o D^{*-} au^+
u_ au$ decays

$$\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (1.23 \pm 0.07 (\text{stat}) \pm 0.08 (\text{syst}) \pm 0.05 (\text{ext})) \times 10^{-2}$$

Leading to

$$R(D^*)_{2015-2016} = 0.247 \pm 0.015(\text{stat}) \pm 0.015(\text{syst}) \pm 0.012(\text{ext})$$

Combining with the Run 1, the **hadronic** result, we obtain an agreement to SM within 1σ

$$R(D^*)_{2011-2016} = 0.257 \pm \underbrace{0.012}_{\text{stat}} \pm \underbrace{0.014}_{\text{syst}} \pm \underbrace{0.012}_{\text{ext}}$$

One of the most precise measurements of $R(D^*)$

[HFLAV]

14

 $R(D)-R(D^*)$ with muonic τ decays

- Simultaneous measurement of R(D) and $R(D^*)$ with **Run 1** data
 - **Muonic** channel $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$
- No narrow peak to fit (3 neutrinos in final state)
- Backgrounds : partially reconstructed B decays
 - $B \rightarrow D^* \mu \nu, B \rightarrow D^{**} \mu \nu, B \rightarrow D^* DX$ with $D \rightarrow \mu X, ...$
- Select $D^0\mu^-$ and $D^{*+}\mu^-$ candidates where
 - $D^0 \rightarrow K^- \pi^+, D^{*+} \rightarrow D^0 \pi^+$
 - Reconstructed $D^{*+} \rightarrow D^0 \pi^+$ is vetoed in $D^0 \mu^+$ sample
- Trigger on D^0 preserve acceptance for soft muons
- Custom muon ID classifier, flatter in kinematic acceptance
 - Reduces misID background

[arXiv:2302.02886]

• Simultaneous measurement of R(D) and $R(D^*)$ with Run 1 data using **muonic** $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$

3D template fit to

- $q^2 \equiv (p_B p_{D^*})^2$
- $m_{
 m miss}^2 \equiv (p_B p_{D^*} p_{\mu})^2$
- E^*_{μ} energy of μ

 $\begin{cases} R(D) &= 0.441 \pm 0.060(\text{stat}) \pm 0.066(\text{syst}) \\ R(D^*) &= 0.281 \pm 0.018(\text{stat}) \pm 0.023(\text{syst}) \end{cases}$

Agreement with SM within 1.9 σ

$R(D)-R(D^*)$ world average

[HFLAV]

 $R(\Lambda_c)$ with hadronic τ decays

$R(\Lambda_c)$ with hadronic τ decays

• First LFU test in a **baryonic** $b \to c \ell \nu_\ell$ decay with Run 1 data using hadronic $\tau^+ \to 3\pi^\pm(\pi^0)$

LHCb

3 fb⁻¹

1.5

2.0

 t_{τ} [ps]

1.0

- Normalisation channel $\Lambda^0_b
ightarrow \Lambda^+_c 3 \pi^\pm$

$$\mathcal{K}(\Lambda_c^+) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ 3\pi)}$$

$$R(\Lambda_c^+) = \mathcal{K}(\Lambda_c^+) \left\{ \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ 3\pi)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})} \right\}_{\text{ext. input}}$$

• 3D template fit to extract signal yield

$R(\Lambda_c)$ with hadronic τ decays

- First LFU test in a **baryonic** $b \to c \ell \nu_{\ell}$ decay with Run 1 data using hadronic $\tau^+ \to 3\pi^{\pm}(\pi^0)$
- Normalisation channel $\Lambda^0_b
 ightarrow \Lambda^+_c 3 \pi^\pm$

$$\mathcal{K}(\Lambda_c^+) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ 3\pi)}$$

$$R(\Lambda_{c}^{+}) = \mathcal{K}(\Lambda_{c}^{+}) \left\{ \frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} 3\pi)}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \mu^{-} \overline{\nu}_{\mu})} \right\}_{\text{ext. input}}$$

• 3D template fit to extract signal yield

$$\begin{cases} \mathcal{K}(\Lambda_c^+) = 2.46 \pm 0.27(\text{stat}) \pm 0.40(\text{syst}) \\ \mathcal{R}(\Lambda_c^+) = 0.242 \pm 0.026(\text{stat}) \pm 0.040(\text{syst}) \pm 0.059(\text{ext}) \end{cases}$$

Agreement within 1.0 σ to SM

Conclusions

Conclusions

- Recent results from semileptonic to test LFU at LHCb
 - $R(D^*)$ with hadronic au decays (using Run 1 and partial Run 2 data)
 - $R(D)-R(D^*)$ with muonic τ decays
 - $R(\Lambda_c)$ with hadronic au decay
- The combined $R(D)-R(D^*)$ is still at 3.2 σ tension from the SM

Stay tuned:

- $R(D^*)$ with hadronic τ^+ decays using **Run 1 and Run 2** datasets
 - Expected statistical uncertainty of the order of 3% (while: 6.7% for **Run 1** only and for 5% **Run 1 and partial Run 2**)
 - Many systematics will reduce with larger samples
 - The recent BESIII results [PRD 107, 032002 (2023), arXiv:2212.13072] on inclusive $D_{(s)}^{(0,+)} \rightarrow 3\pi^{\pm}X$ could reduce the systematic uncertainties in the legacy measurement to come
- Many more analyses to come: $R(D^0)$, $R(D^+)$, $R(D_s^+)$, $R(D^*)_e$ and *angular analysis* to determine spin structure of potential NP
- · We have started taking data with first upgrade of LHCb, exciting time ahead!

Backups

The LHCb experiment at the Large Hadron Collider

- The Large Hadron Collider (LHC) is a proton-proton accelerator
- · LHCb is one of experiments based at the LHC at CERN, Geneva
- Forward spectrometer initially designed to search for New Physics in the beauty quark sector
- Now very broad programme: charm and top quark, heavy ions, electro-weak physics, Higgs physics, ...
- Excellent vertex resolution (PV resolution: $10 40 \,\mu\text{m}$ in *xy*-plane and $50 300 \,\mu\text{m}$ in *z*-axis)
- Impact parameter (IP) resolution around 12 μm for high-momentum particles
- Momentum relative resolution of 0.5% below 20 GeV/ c and 0.8% around 100 GeV/ c
- Typical PID efficiencies: 80%-95% correct kaon ID and 3%-10% misidentification of pion as kaon

21

LHCb experiment

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Period	∫ L	\sqrt{s}	Number of $b\overline{b}$
Run1 2011-2012	3.2fb^{-1}	7-8 TeV	2.5×10^{11}
Run2 2015-2016	2.0 fb ⁻¹	13 TeV	2.9×10^{11}
Run2 2017-2018	3.9 fb ⁻¹	13 TeV	5.7×10^{11}

$R(D^*)$ hadronic – Signal decay kinematics

- Neutrinos not detected; approximation needed for B reconstruction
- Well measured B^0 and au^+ vertices allow reconstruction of flight directions
- · Momentum as a function of angle between the systems

• Maximum allowed values for the angles \Rightarrow unambiguous estimate of momentum

$R(D^*)$ hadronic – Signal decay kinematics

LHCD

•

Two-fold ambiguities in determining τ momentum:

$$|\vec{p}_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2)|\vec{p}_{3\pi}|\cos\theta_{\tau,3\pi} \pm E_{3\pi}\sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2|\vec{p}_{3\pi}|^2\sin^2\theta_{\tau,3\pi}}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta_{\tau,3\pi})}$$

where $\theta_{\tau,3\pi}$ is the angle between the 3π system three-momentum and the τ line of flight. Approximation: take the maximum allowed angle

$$heta_{ au,3\pi}pprox heta_{ au,3\pi}^{\max} = rcsin\left(rac{m_ au^2-m_{3\pi}^2}{2m_ au|ec{p}_{3\pi}|}
ight),$$

The B^0 momentum is obtained similarly:

$$|\vec{p}_{B^0}| = \frac{(m_Y^2 + m_{B^0}^2)|\vec{p}_Y|\cos\theta_{B^0,Y} \pm E_Y \sqrt{(m_{B^0}^2 - m_Y^2)^2 - 4m_{B^0}^2|\vec{p}_Y|^2\sin^2\theta_{B^0,Y}}}{2(E_Y^2 - |\vec{p}_Y|^2\cos^2\theta_{B^0,Y})}$$

with

$$artheta^{\mathsf{max}}_{B^0,\,Y} ~=~ rcsin\left(rac{m_{B^0}^2-m_Y^2}{2m_{B^0}|ec{p}_Y|}
ight),$$

where *Y* represents the $D^{*-}\tau^+$ system.

Properties of charged leptons

Particle	Mass (MeV/c ²)	Lifetime	Main decay modes
e^-	0.5109989461(31)	>6.6×10 ²⁶ years	_
μ^-	105.6583745(24)	2.1969811(22) $\mu{ m s}$	$e^- ar{ u}_e u_\mu$
$ au^-$	1776.86(12)	290.3(5) fs	$\pi^{-}\pi^{0}\nu_{\tau} (25.5\%)$ $e^{-}\bar{\nu}_{e}\nu_{\tau} (17.8\%)$ $\mu^{-}\bar{\nu}_{\mu}\nu_{\tau} (17.39\%)$ $\pi^{-}\nu_{\tau} (10.8\%)$ $\pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (9.3\%)$

 τ lepton Branching Ratios [PDG 2018]

Mode	$\mathcal{BR}\left(\% ight)$
$\tau^- o \pi^- \pi^0 u_{ au}$	25.49 ± 0.09
$ au^- ightarrow e^- ar u_e u_ au$	17.82 ± 0.04
$ au^- o \mu^- ar u_\mu u_ au$	17.39 ± 0.04
$\tau^- \to \pi^- \nu_{\tau}$	10.82 ± 0.05
$\tau^- o \pi^- \pi^+ \pi^- \nu_{ au}$	9.31 ± 0.05
$\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	4.62 ± 0.05

D^{*} branching ratios

Mode	\mathcal{BR}
$D^{*}(2007)^{0} ightarrow D^{0}\pi^{0}$	$(64.7 \pm 0.9)\%$
$D^*(2007)^0 o D^0\gamma$	$(35.3\pm0.9)\%$
$D^{*}(2010)^{+} o D^{0}\pi^{+}$	$(67.7 \pm 0.5)\%$
$D^*(2010)^+ ightarrow D^+ \pi^0$	$(30.7\pm0.5)\%$
D^* (2010) $^+ ightarrow D^+ \gamma$	$(1.6\pm0.4)\%$

Particle	Mass (MeV/c ²)	Lifetime
D^+	1869.65 ± 0.05	$(1.040\pm0.007)\mathrm{ps}$
D^0	1864.83 ± 0.05	$(0.4101\pm 0.0015)\mathrm{ps}$
D_s^+	1968.34 ± 0.07	$(0.504\pm0.004)\mathrm{ps}$
Λ_c^+	2286.46 ± 0.14	$(0.200\pm0.006)\mathrm{ps}$
$D^{*}(2007)^{0}$	2006.85 ± 0.05	-
$D^{*}(2010)^{-}$	2010.26 ± 26	_

Mode	BR
$B^0 o D^*(2010)^- D_s^+$	$(8.0 \pm 1.1) imes 10^{-3}$
$B^0 o D^*(2010)^- D_s^{*+}$	$(1.77\pm0.14) imes10^{-2}$
$B^0 o D^*(2010)^- D^0 K^+$	$(2.47 \pm 0.10 \pm 0.18) \times 10^{-3}$
$B^0 o D^*(2010)^- D^*(2007) K^+$	$(10.6 \pm 0.33 \pm 0.86) \times 10^{-3}$
$B^0 o D^*$ (2010) $^-\pi^+\pi^+\pi^-\pi^0$	$(1.67 \pm 0.27)\%$
$B^0 o D^*(2010)^- 3 \pi^+ \pi^+ 2 \pi^-$	$(4.7 \pm 0.9)\%$
$B^0 o D^*(2010)^- D_{s0}(2317)^+$	$(1.5 \pm 0.6)\%$
$B^0 o D^*(2010)^- D_{s\!\scriptscriptstyle I}(2457)^+$	$(9.3 \pm 2.2) imes 10^{-3}$
$B^0 ightarrow D^*(2010)^- D_{s1}(2536)^+, \ D^+_{s1} ightarrow D^{*0}K^+ + D^{*+}K^0$	$(5.0 \pm 1.4) imes 10^{-3}$

$R(D^*)$ hadronic – Double-charm backgrounds

- $B \to D^{*-}(D^+, D^0)X$ decays are sub-leading contributors
- + $D^+
 ightarrow K^- \pi^+ \pi^+ (\pi^0)$ contributes to the $B
 ightarrow D^{*-} D^+ X$ backgrounds
 - Significant when π^- is misidentified as K^-
 - · Tight particle identification requirements

- $D^0 \to K^- 3\pi^{\pm}$ contributes to the $B \to D^{*-} D^0 X$ backgrounds
 - · When there is an extra charged track
 - · A BDT classifier is used to reject such events

- Double-charm decays being the largest fraction in the final sample, need to be modelled well in the final signal extraction fit
 - Templates used in the signal fit are derived from simulation and corrections need to be applied wherever
 necessary
- · Specific control samples derived using the peculiarities of these decays for further studies

Decay	Sample selection
$B \rightarrow D^{*-}D_s^+X$	reversing the anti- D_s^+ BDT selection
$B ightarrow D^{*-}D^+_s(ightarrow 3\pi^\pm)X$	$m(3\pi^{\pm})$ around D_s^+ mass
$B \to D^{*-}D^+X$	kaon mass hypothesis given to π^- among the 3 π^\pm candidates
$B ightarrow D^{*-} D^0 X$	additional charged track (kaon) selected in an event

• Remaining cuts for the *normalisation* mode

Variable	cut	targeted background
$m(B^0)$	\in [5150, 5400] MeV	combinatorial
$m(D^{*-})-m(\overline{D}^{0})$	\in [143, 148] MeV/ c^2	combinatorial D^{*-}
$m(\kappa^-\pi^+)$	\in [1840, 1890] MeV/ c^2	combinatorial D^0
$[\operatorname{vtx}_z(\overline{D}{}^0) - \operatorname{vtx}_z(au^+)]/ ext{error}$	> 4	non-prompt
ProbNNpi π^- from D^{*-}	> 0.1	misidentification
ProbNNpi π^\pm from $ au^+$	> 0.6	misidentification
ProbNNk π^- from $ au^+$	< 0.1	misidentification
isolation BDT	> 0.1	double-charm
combinatorial BDTD	> 0.0	combinatorial

• Remaining cuts for the *signal* mode

Variable	cut	background targeted
$[\operatorname{vtx}_z(au^+) - \operatorname{vtx}_z(B^0)]/\operatorname{error}$	> 2	prompt
$m(K^-\pi^+)$	\in [1840, 1890] MeV/ c^2	combinatorial D^0
$m(D^{*-}) - m(K^{-}\pi^{+})$	\in [143, 148] MeV/ c^2	combinatorial D^{*-}
$m(au^+)$	$< 1600 { m MeV} / c^2$	double-charm
$m(B^0)$	< 5100 MeV/ c^2	combinatorial
q^2	\in [0, 11] GeV $^2\!/c^4$	combinatorial
ProbNNpi π^- from D^{*-}	> 0.1	misidentification
ProbNNpi π^\pm from $ au^+$	> 0.6	misidentification
ProbNNk π^- from $ au^+$	< 0.1	misidentification
anti D_s^+ BDT	> -0.2	$D^{*-}D^+_s X$
isolation BDT	> 0.0	double-charm
combinatorial BDTD	> 0.0	combinatorial
detachment BDTG	> 0.2	prompt

$R(D^*)$ hadronic – Production of D_s^+ in $B \to D^{*-}D_s^+X$

LHCb

- $B \to D^{*-}D_s^+X$ decays produced in a spectrum of $B \to D^{*-}D_s^{+(*,**)}X$ processes
- · Rare knowledge about the fraction of each process
- Enriched data sample of double charm decays with fully reconstructed $D_s^+ o 3\pi^\pm$ process
- Fit to $m(D^{*-}3\pi)$

$$\mathcal{P} = f_{ ext{c.b.}} \mathcal{P}_{ ext{c.b.}} + rac{(1-f_{ ext{c.b.}})}{k} \sum_i f_i \mathcal{P}_i,$$

- · Fractions of each component determined and used as constraints in the signal extraction fit
- · Projections of data and simulations on the fit variables shows a good agreement

$R(D^*)$ hadronic – Decays of D_s^+ in $B \to D^{*-} D_s^+ X$

- Data sample selected with low anti- D_s^+ BDT score
- Simultaneous fit to $m(\pi^+\pi^-)_{\min}, m(\pi^+\pi^-)_{\max}, m(\pi^+\pi^+)$ and $m(3\pi^\pm)$
- The fit model PDF is constructed as

$$\mathcal{P}_{\text{total}} = N_{D_s^+} \sum_i f_i \mathcal{P}_i(D_s^+) + N_{non-D_s^+} \mathcal{P}_{non-D_s^+}$$

where *i* represents different D_s^+ decay modes

- The different D_s^+ modes can be broadly divided into
 - $\eta\pi^+/\eta\rho^+$
 - $\eta'\pi^+/\eta'\rho^+$
 - $(\omega + \phi)\pi^+/(\omega + \phi)\rho^+$
 - rest of the modes $\eta 3\pi$, ηa_1 , $\eta' 3\pi$, $\eta' a_1$, $\omega 3\pi$, ωa_1 , $\phi 3\pi$, ϕa_1 , $K^0 3\pi$, $K^0 a_1$, $\tau \nu$ and non-resonant 3π

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

$$\begin{split} \mathcal{P}_{\text{total}}(q^2, t_{\tau}, \text{BDT}) &= 1/N_{\text{total}} \times \{ N_{\text{sig}} \left[f_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}} \ \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}} + (1 - f_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}}) \ \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \pi^0 \overline{\nu}_{\tau}} \\ &+ f_{D^{**\tau\nu}} \ \mathcal{P}_{B \to D^{**\tau+\nu}} \right] + N_{D^0}^{\text{same}} \left[\mathcal{P}_{B \to D^{*-} D^0 X \text{ SV}} + f_{D^0}^{\upsilon_1 - \upsilon_2} \ \mathcal{P}_{B \to D^{*-} D^0 X \text{ DV}} \right] \\ &+ N_{D^+_s} / k \times \left[\mathcal{P}_{B^0 \to D^{*-} D^+_s} + f_{D^+_s} \ \mathcal{P}_{B^0 \to D^{*-} D^+_s} + f_{D^+_{s^0}} \ \mathcal{P}_{B^0 \to D^{*-} D^+_{s^0}} \right. \\ &+ f_{D^+_{s^1}} \ \mathcal{P}_{B^0 \to D^{*-} D^+_{s^1}} + f_{D^{**} D_s X} \ \mathcal{P}_{B \to D^{*-} D^+_s X} \ f_{B_s \to D^* D^+_s X} \ \mathcal{P}_{B^0 \to D^{*-} D^+_s X} \right] \\ &+ N_{D^+_s} \ f_{D^+} \ \mathcal{P}_{B \to D^{*-} D^+ X} + N_{B \to D^{*-} 3\pi^\pm X} \ \mathcal{P}_{B \to D^{*-} 3\pi^\pm X} \\ &+ N_{B_1 - B_2} \ \mathcal{P}_{\text{combinatoric } B} \ + N_{\text{fake } D^0} \ \mathcal{P}_{\text{combinatoric } D^0} + N_{\text{fake } D^*} \ \mathcal{P}_{\text{combinatoric } D^{*-}} \right] \end{split}$$

- 16 templates: 13 templates from simulation, 3 templates from data
- 4 free parameters , 6 gaussian constrained parameters and 6 fixed parameters

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

$$\begin{split} \mathcal{P}_{\text{total}}(q^2, t_{\tau}, \text{BDT}) &= 1/N_{\text{total}} \times \left\{ \begin{array}{l} N_{\text{sig}} \left[f_{\tau \rightarrow \pi + \pi^- \pi^+ \overline{\nu}_{\tau}} & \mathcal{P}_{\tau \rightarrow \pi + \pi^- \pi^+ \overline{\nu}_{\tau}} & + (1 - f_{\tau \rightarrow \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}}) & \mathcal{P}_{\tau \rightarrow \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}} \\ &+ f_{D^{**\tau\nu}} & \mathcal{P}_{B \rightarrow D^{**\tau} \tau^+ \nu_{\tau}} \right] + N_{D^0}^{\text{same}} \left[\left[\mathcal{P}_{B \rightarrow D^* - D^0 X \text{ SV}} & + f_{D^0}^{\nu_0 - \nu_2} & \mathcal{P}_{B \rightarrow D^* - D^0 X \text{ DV}} \right] \\ &+ N_{D_{\pi}^+} & /k \times \left[\left[\mathcal{P}_{B^0 \rightarrow D^* - D_{\pi^+}^*} & + f_{D_{\pi^+}} & \mathcal{P}_{B^0 \rightarrow D^* - D_{\pi^+}^*} & + f_{D_{\pi^+}^{*0}} & \mathcal{P}_{B^0 \rightarrow D^* - D_{\pi^0}^*} \right] \\ &+ f_{D_{\pi^+}^*} & \mathcal{P}_{B^0 \rightarrow D^* - D_{\pi^+}^*} & + f_{D^+} & \mathcal{P}_{B^0 \rightarrow D^* - D_{\pi^+}^*} & + f_{B_{\pi^+} \rightarrow D^* D_{\pi^+}^*} \\ &+ N_{D_{\pi^+}^*} & f_{D^+} & \mathcal{P}_{B \rightarrow D^* - D + X} & + N_{B \rightarrow D^{*-3} \pi^{\pm} X} & \mathcal{P}_{B \rightarrow D^* - 3\pi^{\pm} X} \\ &+ N_{B_1 - B_2} & \mathcal{P}_{\text{combinatoric } B} & + N_{\text{fake } D^0} & \mathcal{P}_{\text{combinatoric } D^0} & + N_{\text{fake } D^+} & \mathcal{P}_{\text{combinatoric } D^{*-}} \end{array} \right\} \end{split}$$

- 16 templates: 13 templates from simulation, 3 templates from data
- 4 free parameters , 6 gaussian constrained parameters and 6 fixed parameters

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

$$\begin{split} \mathcal{P}_{\text{total}}(q^2, t_{\tau}, \text{BDT}) &= 1/N_{\text{total}} \times \left\{ \begin{array}{c} N_{\text{sig}} \left[f_{\tau \rightarrow \pi + \pi^- \pi^+ \mathcal{P}_{\tau}} & \mathcal{P}_{\tau \rightarrow \pi^+ \pi^- \pi^+ \mathcal{P}_{\tau}} + (1 - f_{\tau \rightarrow \pi^+ \pi^- \pi^+ \mathcal{P}_{\tau}}) & \mathcal{P}_{\tau \rightarrow \pi^+ \pi^- \pi^+ \mathcal{P}_{\tau}} \right] \\ &+ f_{D^{*-\tau\nu}} & \mathcal{P}_{B \rightarrow D^{*-\tau} \nu_{\tau}} \right] + \begin{array}{c} N_{D^0}^{\text{same}} \left[\mathcal{P}_{B \rightarrow D^{*-D} N \text{ SV}} + f_{D^0}^{u_1 - v_2} & \mathcal{P}_{B \rightarrow D^{*-D} N \text{ DV}} \right] \\ &+ N_{D^+_{\pi}} / k \times \left[\mathcal{P}_{B^0 \rightarrow D^{*-} D^*_{\pi}} + f_{D^+_{\pi}} & \mathcal{P}_{B^0 \rightarrow D^{*-D^+_{\pi}}} + f_{D^+_{\pi}} & \mathcal{P}_{B^0 \rightarrow D^{*-D^+_{\pi}}} \\ &+ f_{D^+_{\pi^+_{\pi^+}}} & \mathcal{P}_{B^0 \rightarrow D^{*-D^+_{\pi^+}}} + f_{D^{*+D} N X} & \mathcal{P}_{B \rightarrow D^{*-D^+_{\pi^+}}} & \mathcal{P}_{B^0 \rightarrow D^{*-D^+_{\pi^+}}} \\ &+ N_{D^+_{\pi^+_{\pi^+}}} & \mathcal{P}_{D^0 \rightarrow D^{*-D^+_{\pi^+}}} + f_{D^{*+D} N X} & \mathcal{P}_{B \rightarrow D^{*-D^+_{\pi^+}}} & \mathcal{P}_{B^0 \rightarrow D^{*-D^+_{\pi^+}}} \\ &+ N_{D^+_{\pi^+_{\pi^+}}} & \mathcal{P}_{D^0 \rightarrow D^{*-D^+_{\pi^+}}} + N_{B \rightarrow D^{*-3\pi^\pm X}} & \mathcal{P}_{B \rightarrow D^{*-3\pi^\pm X}} \\ &+ N_{B_1 - B_2} & \mathcal{P}_{\text{combinatoric } B} &+ N_{\text{fake } D^0} & \mathcal{P}_{\text{combinatoric } D^0} + N_{\text{fake } D^*} & \mathcal{P}_{\text{combinatoric } D^{*--}} \end{array} \right\}$$

- 16 templates: 13 templates from simulation, 3 templates from data
- 4 free parameters, 6 gaussian constrained parameters and 6 fixed parameters

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

$$\begin{split} \mathcal{P}_{\text{total}}(q^2, t_\tau, \text{BDT}) &= 1/N_{\text{total}} \times \{ \begin{array}{c} N_{\text{sig}} \left[f_{\tau^+ \to \pi^+ \pi^- \pi^+ \mathcal{D}_\tau} & \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \mathcal{D}_\tau} \right] + (1 - f_{\tau^+ \to \pi^+ \pi^- \pi^+ \mathcal{D}_\tau} \right] \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \mathcal{D}_\tau} \\ &+ f_{D^{***}} & \mathcal{P}_{B \to D^{***} \mathcal{D}^*} \right] + N_{D^{**}}^{\text{same}} \left[\begin{array}{c} \mathcal{P}_{B \to D^{**} - D^0 X \text{ SV}} + f_{D^{**}}^{\upsilon_1 - \upsilon_2} & \mathcal{P}_{B \to D^{**} - D^0 X \text{ DV}} \end{array} \right] \\ &+ N_{D^*_s} & / k \times \left[\begin{array}{c} \mathcal{P}_{B^0 \to D^{**} - D^*_s} + f_{D^*_s} & \mathcal{P}_{B^0 \to D^{*-} - D^*_s} + f_{D^*_s} + f_{D^*_s - D^*_s} \right] \\ &+ f_{D^*_{s^+}} & \mathcal{P}_{B^0 \to D^{*-} - D^*_{s^+}} + f_{D^{**} - D^*_s} & \mathcal{P}_{B \to D^{**} - D^*_s X} \end{array} + f_{D^*_{s^+}} & \mathcal{P}_{B^0_s \to D^{*-} - D^*_s X} \end{array} \\ &+ N_{D^*_s} & f_{D^+} & \mathcal{P}_{B \to D^{*-} D^+_x} + N_{B \to D^{*-} 3\pi^\pm X} & \mathcal{P}_{B \to D^{*-} 3\pi^\pm X} \\ &+ N_{B_1 - B_2} & \mathcal{P}_{\text{combinatoric } B} + N_{\text{fake } D^0} & \mathcal{P}_{\text{combinatoric } D^0} + N_{\text{fake } D^*} & \mathcal{P}_{\text{combinatoric } D^{*-}} \end{array} \} \end{split}$$

- 16 templates: 13 templates from simulation , 3 templates from data
- 4 free parameters , 6 gaussian constrained parameters and 6 fixed parameters

Future of $R(X_c)$ at LHCb

