Latest results and precision measurements from the NA62 experiment Jacopo Pinzino

INFN Pisa

HADRON23 06/06/23

Outline

- The NA62 Experiment
- Measurement of the ultra rare $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ process [JHEPO6(2021)093]
- Precision measurements of rare decays:
 - $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ [JHEP 11 (2022) 011]
 - $K^+ \rightarrow \pi^+ \gamma \gamma$ [preliminary result]
- Searches for LFV/LNV processes: [PLB 797 2019 134794], [PRL 127 2021 13 131802], [PLB 830 2022 137172]
- Exotic searches (2021 data): $A' \rightarrow \mu^+\mu^-$, $A' \rightarrow e^+e^-$, $K^+ \rightarrow \pi^+e^+e^-e^+e^-$ [preliminary results]

The NA62 Experiment

- NA62: High precision fixed-target Kaon experiment at CERN SPS
- Main goal: measurement of BR($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$)
- Broader physics program: LFV / LNV in K⁺ decays, precision measurements and hidden sector particles searches.

▶ p (proton) → ion → neutrons → p (antiproton) →+→ proton/antiproton conversion → neutrinos → electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cem Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-TDF Neutrons Time Of Flight

NA62 Timeline

- 2008: NA62 Approval
- 2014: NA62 Pilot Run (partial layout)
- 2015: Commissioning run
- 2016 2018: NA62 RUN 1
- 2021+: NA62 RUN 2

~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Torino, TRIUMF, Vancouver UBC

The $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ decay

- High sensitivity to New Physics
- FCNC process forbidden at tree level
- Highly CKM suppressed (BR ~ $|V_{ts}xV_{td}|^2$)

- Very clean theoretically: Short distance contribution
- hadronic matrix element extracted from precisely measured BR(K⁺ $\rightarrow \pi^0 e^+ v$)
- Precise SM predictions: BR(K⁺ $\rightarrow \pi^+ \upsilon \overline{\upsilon}$) = (8.60 ± 0.42) × 10⁻¹¹ BR(K_L $\rightarrow \pi^0 \upsilon \overline{\upsilon}$) = (2.94 ± 0.15) × 10⁻¹¹

[Buras et al. arXiv:2205.01118v1]

$K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ and New Physics

Measurement of charged ($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$) and neutral ($K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$) modes can discriminate among different NP scenarios

- Models with CKM-like flavor structure (Models with MFV)
 [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Custodial Randall-Sundrum

[Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]

• Simplified Z, Z' models

[Buras, Buttazzo, Knegjens, JHEP11(2015)166]

[Isidori et al., Eur. Phys. J. C (2017) 77: 618]

- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models
- Leptoquarks

[S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]

MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]

$K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ and the LFU violation

The Measurement of $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ together with $B^+ \rightarrow K^{*+} \upsilon \overline{\upsilon}$ can can probe the Lepton-Flavour Universality

- An interactions responsible for LFU violations can couple mainly to the third generation of lefthanded fermions;
- $K \rightarrow \pi \upsilon \overline{\upsilon}$ is the only kaon decays with thirdgeneration leptons (the τ neutrinos) in the final state;

EPJ C (2017) 77: 618

NA62 Layout

2

1

0

-1

-2

Analysis strategy

Key analysis requirements: highly boosted decay (γ ~ 150)

- Large undetectable missing energy (neutrinos)
- All energy from visible particles must be detected
- Hermetic detector coverage
- 2 signal regions in m²_{miss}
- $15 < P_{\pi^+} < 45 \text{ GeV/c}$
- 60 m long decay region

Performance:

٠

•

- $10^{-3} \text{ GeV}^2/c^4 \text{ m}^2_{\text{miss}}$ resolution
 - > 10³ kinematic background suppression
- > 10⁸ Muon suppression
 - > 10⁸ π^0 (from K⁺ $\rightarrow \pi^+\pi^0$) suppression
- O(100 ps) timing between sub-detectors

$K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$: RUN1 result (2016 -2018)

[JHEP 06(2021) 093]

NA62 Run1 result:

- $N_{\pi v \overline{v}}^{exp} = 10.01 \pm 0.42_{syst} \pm 1.19_{ext}$
- $N_{bg}^{exp} = 7.03^{+1.05}_{-0.92}$
- $SES = (0.839 \pm 0.053_{syst}) \times 10^{-11}$
- 20 events observed in the signal region
- Br(K⁺ $\rightarrow \pi^+ v \bar{v}) = (10.6^{+4.0}_{-3.5 \text{ stat}} \pm 0.9_{\text{syst}}) \cdot 10^{-11} \text{ at } 68\% \text{ CL } (3.4\sigma \text{ significance})$

Precision Measurement: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

FCNC decay described in the scope of ChPT, mediated by one photon exchange $K^+ \rightarrow \pi^+ \Upsilon^*$

[Nucl. Phys. B291 (1987) 692–719], [Phys. Part. Nucl. Lett. 5 (2008) 76–84]

Together with $K^+ \rightarrow \pi^+ e^+ e^-$ allow to Test the Lepton Flavour Universality. [JHEP 02, 049 (2019)]

Form factor parametrization at O(p⁶): $W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$ $z = \frac{m^2 (l^+ l^-)}{m_K^2}$

 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$: result

 $A_{\rm FB} = \frac{\mathcal{N}(\cos\theta_{K\mu} > 0) - \mathcal{N}(\cos\theta_{K\mu} < 0)}{\mathcal{N}(\cos\theta_{K\mu} > 0) + \mathcal{N}(\cos\theta_{K\mu} < 0)}$

[JHEP 11 (2022) 011]

Precision Measurement: $K^+ \rightarrow \pi^+ \gamma \gamma$

- Rare decay that allow ChPT tests at O(p⁶)
- Main kinematic variable: $z = \frac{m^2(\gamma\gamma)}{m_K^2}$, $y = \frac{P_K(Q_{\gamma_1} Q_{\gamma_2})}{m_K^2}$
- BR($K^+ \rightarrow \pi^+ \gamma \gamma$) at O(p⁶) parametrized by a real parameter \hat{c}

Goal: Measurement of BR(K⁺ $\rightarrow \pi^+\gamma\gamma$) and \hat{c}

Signal selection: π^+ track matching K^+ track; EM calorimeter γ pair;

 $K^+ \rightarrow \pi^+ \gamma \gamma$ Preliminary result

$$N_{obs} = 4039 \qquad N_{bkg} = 393 \pm 20$$

$$\hat{c} = 1.713 \pm 0.075_{stat} \pm 0.037_{syst} \ O(p^6)$$

$$BR(K^+ \to \pi^+ \gamma \gamma) = (9.73 \pm 0.17_{stat} \pm 0.08_{syst}) \times 10^{-7}$$

LFV & LNV in Kaon Decays

Violation of LN and LF conservation laws predicted in BSM models (for example via Majorana neutrinos or leptoquark)

Previous experimental results:

- BR(K⁺ $\rightarrow \pi^- e^+ e^+$) < 6.4 × 10⁻¹⁰ @ 90% CL [BNL E865 : PRL 85 2877 (2000)]
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 8.6 \times 10^{-11}$ @ 90% CL [CERN NA48/2 : PL B769 67 (2017)]

LNV/LFV searches in NA62:

- 2017 + 2018 data
- Blind analysis
- Normalization to SM decays ($K^+ \rightarrow \pi^+ l^+ l^-$ and $K^+ \rightarrow \pi^+ \pi^-$)
- Acceptance:
 - \circ ~5% for K⁺→π⁻e⁺e⁺ and K⁺→πeµ
 - 10% for K⁺→ $\pi^-\mu^+\mu^+$
- Main background is due to pion mis-identification and pion decays in flight

$K^+ \rightarrow \pi^- e^+ e^+$

- Full RUN1 data set
- Expected background in the blinded region: 0.43 ± 0.09
- No candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^- e^+ e^+$) < 5.3 · 10⁻¹¹ @ 90% CL

LFV & LNV results

10²

10

10-1

10-

380

400

420

440

 $K^+ \rightarrow \pi^- \mu^+ e^+$ $K^+ \rightarrow \pi^+ \mu^- e^+$ $\pi^0 \rightarrow \mu^- e^+$ $K^+ \rightarrow \pi^- \mu^+ \mu^+$ $K^+ \rightarrow \pi^- e^+ e^+$ $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ $K^+ \rightarrow \mu^- \nu e^+ e^+$

BR UL PDG 2019	BR UL N
50×10^{-11}	4.2×1
52×10^{-11}	6.6×1
34×10^{-10}	3 . 2 × 1
8.6×10^{-11}	4.2×1
64×10^{-11}	5.3×1
N/A	8 . 5 × 10
N/A	8 . 1 × 1

 $LNV: K^+ \rightarrow \pi^- \mu^+ \mu^+$

LNV/LFV :
$$K^+ \rightarrow \pi^- \mu^+ e^-$$

Factor 12 improvement Factor 8 improvement Factor 11 improvement Factor 2 improvement Factor 12 improvement

Search for Dark Photon in NA62

- Dark Photon: One of the several extensions of the SM (vector portal)
- Lepton antilepton final states dominates for $M_A < 600 \text{ MeV/c}^2$

NA62 beam-dump mode

- Target removed
- 3.2 m Cu-Fe collimators put in the p⁺ beam path
- ~ 1.5× nominal beam intensity
- In 2021, NA62 collected (1.4 ± 0.28) × 10¹⁷ PoT

$A' \rightarrow \mu^+ \mu^-$: result (preliminary)

Signal selection

- Primary vertex close to p beam impact point
- μ⁺μ⁻ vertex within fiducial volume
- μ^{\pm} PID using LKr and MUV3
- Photon veto (no activity in LAV)
- CRs and SR blinded until analysis approval

 $Z_{TAX} \rightarrow$ longitudinal position of the primary vertex, $\sigma_Z \sim 5.5$ m $CDA_{TAX} \rightarrow$ closest distance of approach between the beam direction and the $\mu^+\mu^-$ pair direction, $\sigma_{CDA} \sim 7$ mm

$A' \rightarrow e^+e^-$: result (preliminary)

Signal selection

- Primary vertex close to p beam impact point
- e⁺e⁻ vertex within fiducial volume
- e[±] PID using LKr and MUV3
- No in-time activity in muon detector
- no in-time activity in LAV (to remove interaction of muons with LAV material)
- CRs and SR blinded until analysis approval

 $Z_{TAX} \rightarrow$ longitudinal position of the primary vertex, $\sigma_z \sim 5.5$ m $CDA_{TAX} \rightarrow$ closest distance of approach between the beam direction and the e⁺e⁻ pair direction, $\sigma_{CDA} \sim 7$ mm

$A' \rightarrow \mu^+ \mu^-$ and $A' \rightarrow e^+ e^-$

With $(1.4 \pm 0.28) \times 10^{17}$ PoT, from a cut-based counting experiment blind analysis, a 90% CL upper limit has been set for A' $\rightarrow \mu^+\mu^-$ and A' $\rightarrow e^+e^-$ exploring a new region of the parameter space

NA62 intends to collect 10¹⁸ PoT in beam-dump in 2023-2025 with interesting perspectives on dark photons, ALPs, dark scalars and HNLs

$K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$

$K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ result (preliminary)

- 5 track vertex topology
- Kinematic PID of positive tracks
- Conditions on $m_{\pi 4e}$ and m_{miss}^2
- m_{4e} outside the π^0 mass region
- Signal ($K^+ \rightarrow \pi^+ aa$ "Dark")
 - Same selection as $K_{\pi 4e}$
 - Choice of the optimal e^+e^- mass pair
 - Condition on m_{ee}
- Normalization: $K^+ \rightarrow \pi^+ \pi_{DD}^0$
 - 5 track topology and PID as for $K_{\pi 4e}$
 - Kinematic condition on m_{4e}

RESULT: $BR(K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-) < 1.4 \times 10^{-8}$ @90% CL

Summary

• $K^+ \rightarrow \pi^+ \nu \overline{\nu}$	NA62 Run1 data JHEP 06 (2021) 093
• $K^+ \rightarrow \pi^+ \mu^+ \mu^-$	NA62 Run1 data JHEP 11 (2022) 011
• $K^+ \rightarrow \pi^+ \gamma \gamma$	NA62 Run1 data preliminary, final results in progress
• $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$	NA62 Run1 data PRL 127 (2021) 131802
• $\pi^0 \rightarrow \mu^- e^+$	NA62 Run1 data PRL 127 (2021) 131802
• $K^+ \rightarrow \pi^- \mu^+ \mu^+$	NA62 Run1 data PLB 797 (2019) 134794
• $K^+ \rightarrow \pi^- e^+ e^+$	NA62 Run1 data PLB 830 (2022) 137172
• $K^+ \rightarrow \pi^-\pi^0 e^+ e^+$	NA62 Run1 data PLB 830 (2022) 137172
 K⁺ → μ⁻ve⁺e⁺ 	NA62 Run1 data PLB 838 (2022) 137679
• $A' \rightarrow \mu^+ \mu^-$	NA62 2021 data preliminary, final results in progress
• $A' \rightarrow e^+e^-$	NA62 2021 data preliminary, final results in progress
• $K^+ \rightarrow \pi^- e^+ e^- e^+ e^-$	NA62 Run1 data preliminary, final results in progress

Ye

Single Event Sensitivity (SES)

	Subset S1	Subset S2
$N_{\pi\pi} \times 10^{-7}$	3.14	11.6
$A_{\pi\pi} \times 10^2$	7.62 ± 0.77	11.77 ± 1.18
$A_{\pi\nu\bar{\nu}} \times 10^2$	3.95 ± 0.40	6.37 ± 0.64
$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05
$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01
$SES \times 10^{10}$	0.54 ± 0.04	0.14 ± 0.01
$N^{ m exp}_{\pi uar u}$	$1.56 \pm 0.10 \pm 0.19_{\rm ext}$	$6.02 \pm 0.39 \pm 0.72_{\rm ext}$

- $K^+ \rightarrow \pi^+ \pi^0$ decay used for normalization
- Cancellation of systematic effects (PID, Detector efficiencies, kaon ID and beam related acceptance loss)

 $SES_{Run1} = (0.839 \pm 0.054) \cdot 10^{-11}$

Background from Kaon Decay Estimation

Data in $\pi^+\pi^0$ region after $\pi\nu\nu$ selection (including π^0 rejection)

Expected $K^+ \rightarrow \pi^+ \pi^0$ in signal regions after the $\pi v v$ selection

 $N_{\pi\pi}^{exp}(region)$

Fraction of $\pi^+\pi^0$ in signal region measured on control data

 $N(\pi^+\pi^0) \cdot f_{kin}(region)$

- The same procedure is used for $K^+ \rightarrow \mu^+ \nu$ and $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
- $K^+ \rightarrow \pi^+\pi^-e^+\nu_e$ estimation entirely using MC simulations normalized to the S.E.S.

Upstream background

- Pions produced upstream the fiducial volume
 - Early K⁺ decay
 - Interaction of beam particles with the beam spectrometer material
- Pions can be associated to an accidental particle of the beam line
- Dangerous if coupled with pion scattering in the first spectrometer chamber
- Kaon-pion association and geometrical cuts effective
- The geometrical origin of those events allow to define samples for backgrounds validation
- Data driven background estimation

$K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ and the LFU violation

The Measurement of $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ together with $B^+ \rightarrow K^{*+} \upsilon \overline{\upsilon}$ can can probe the Lepton-Flavour Universality

- An interactions responsible for LFU violations can couple mainly to the third generation of lefthanded fermions;
- K → πυυ is the only kaon decays with thirdgeneration leptons (the τ neutrinos) in the final state;

EPJ C (2017) 77: 618

$K \to \pi \upsilon \overline{\upsilon}$ Result and historical context

$K^+ \rightarrow \pi^- \mu^+ \mu^+$

- Expected background in the blinded region: 0.91 ± 0.41
- One candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 4.2 \cdot 10^{-11} @ 90\% CL$

 $K^+ \rightarrow \pi^- \mu^+ e^+$ and $K^+ \rightarrow \pi^+ \mu^- e^+$

NA62 Run 2: 2021–LS3

- The technique was firmly established during RUN1.
- Run 2: $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ measurement in a low-background and high-acceptance regime (O(10%) precision).
- Modifications of the setup for background reduction:
 - o **fourth kaon beam tracker (GTK)** station added and rearrangement of beamline elements around the GTK;
 - **new veto hodoscopes** upstream of the decay volume;
 - o an **additional veto counter** around downstream beam pipe.
- Improved TDAQ: **beam intensity increased by** \sim **30**% wrt Run 1.
- It is foreseen a beam dump mode to collect 10¹⁸ pot in up to 90 days.

Fixed target program at CERN SPS

- SPS fixed target operation foreseen until at least 2038.
- **HIKE** ("High-Intensity Kaon experiment"): a long-term programme at the SPS proposed to search for new physics in kaon decays.
- Measurements of rare K^+ and K_L kaon decay modes: a clear insight into the flavour structure of new physics.
- Details in a Snowmass white paper: <u>arXiv:2204.13394</u>

0.0

Long-term plan for the $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$

- An in-flight $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ experiment, up to ×4 the NA62 beam intensity, aiming at ~5% precision.
- Challenge: **20 ps** time resolution for key detectors to keep random veto under control, while maintaining all other NA62 specifications.
- Challenges aligned with HL-LHC projects and future flavour/dark matter exp.

New pixel beam tracker (GTK):

- time resolution: **<50 ps** per plane;
- pixel size: **<300×300** μm²;
- efficiency: >99% per plane (incl.fill factor);
- material budget : **0.3–0.5% X0**;
- beam intensity: >3 GHz on 30×60 mm²;
- peak intensity: >8.0 MHz/mm².

New STRAW spectrometer:

- operation in vacuum;
- straw diameter/length: 5 mm/2.2 m;
- trailing time resolution: ~6 ns per straw;
- maximum drift time: ~80 ns;
- layout: ~21000 straws (4 chambers);
- total material budget: **1.4% X**₀.

Long-term plan for the $K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$

- **KLEVER**: a high-energy experiment (**10**¹⁹ pot/year) complementary to KOTO.
- Photons from K_L decays boosted forward: veto coverage only up to **100 mrad**.
- Vacuum tank layout and fiducial volume similar to NA62.
- A longer beamline is needed for $\Lambda \to n\pi^0$ background suppression
- 60 SM $K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$ events with S/B ~ 1 and ~20% precision in 5 years of operation;

ain detector/veto systems:		
UV/AFC	Upstream veto/Active final collimator	
LAV1-25	Large-angle vetoes (25 stations)	
MEC	Main electromagnetic calorimeter	
SAC	Small-angle vetoes	

- CPV Charged particle veto
- PSD Pre-shower detector