

Measurement of Λ_c^+ production in pp, p-Pb, and Pb-Pb collisions with the ALICE experiment at the LHC

Clara Bartels (University of Liverpool) on behalf of the ALICE collaboration

HADRON2023 - 20th International Conference on Hadron Spectroscopy and Structure

Quark-Gluon Plasma

Quark-gluon plasma:

- Deconfined state of quarks and gluons
- Created during Pb-Pb collision
- Quickly cools down and hadronises

Heavy-flavour quarks:

- Produced in the early stages of the collision
- Interact with medium during all stages of the system's evolutions
- Excellent probe of QGP and its properties

C. Bartels HADRON 2023 - 20th International Conference on Hadron Spectroscopy and Structure

Heavy-flavour production across collision systems

pp collisions

- Test perturbative QCD calculations
- Investigate hadronization mechanisms
- Baseline for p-Pb and Pb-Pb collisions

p-Pb collisions

Cold nuclear matter effects

Pb-Pb collisions

- Study parton interaction in Quark Gluon Plasma
- Investigate modification of hadronisation mechanisms

Hadronisation mechanisms

Fragmentation:

- Energetic quark or gluon excites the vacuum and creates a pool of quarks and antiquarks
- It combines with them into hadrons
- Predicted to be universal in collision systems

Coalescence:

- Predicted to occur in high parton density systems
- Quark and gluons get close enough in space and momentum to recombine into hadrons directly

Hadronisation mechanisms

Mechanisms can be probed by relative production of hadrons:

- Three low energy quarks recombine into a baryon
- Two intermediate energy quarks recombine into a meson
- High energy quark fragments into lower $p_{\rm T}$ meson
 - Expect enhanced baryon-tomeson ratio at intermediate momentum

The ALICE detector

- One of the 4 main LHC experiments
- Optimised for heavy-ion (Pb-Pb) collisions, but also provides excellent performance in pp collisions
 - Track and PID down to low p_{T}
 - Identification of short-lived particles
 - Low material budget
- Heavy-flavour decay reconstruction achieved with several different techniques and detectors

Reconstruction of the Λ_c^+ baryon

 Λ_{c}^{+} = udc, m = 2286.46 ± 0.14 MeV, ct = 60µm

 $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ (BR = 6.28%) $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$ (BR = 1.59%)

- Reconstructed via hadronic decay channel
- Candidates built as combinatorial of track triplets
- PID selection
- kinematic and topological cuts applied using rectangular cuts or Boosted Decision Trees (BDT)

Reconstruction of the Λ_{c}^{+} baryon

 Λ_{c}^{+} = udc, m = 2286.46 ± 0.14 MeV, ct = 60µm

 $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ (BR = 6.28%) $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$ (BR = 1.59%)

- Reconstructed via hadronic decay channel
- Candidates built as combinatorial of track triplets
- PID selection
- kinematic and topological cuts applied using rectangular cuts or Boosted Decision Trees (BDT)

Reconstruction of the Λ_c^+ baryon

 Λ_{c}^{+} = udc, m = 2286.46 ± 0.14 MeV, ct = 60µm

arXiv:2011.06079

Λ_{c}^{+} cross section evaluation

Corrections are applied to the yield:

- Branching ratio
- Feed-down
 - Account for Λ_c⁺ produced through beauty-hadron decays
- Efficiency
- Detector acceptance

C. Bartels HADRON2023 - 20th International Conference on Hadron Spectroscopy and Structure

Λ_{c}^{+} cross section evaluation

Corrections are applied to the yield:

- Branching ratio
- Feed-down
 - Account for Λ_c⁺ produced through beauty-hadron decays
- Efficiency
- Detector acceptance

Λ_c^+ cross section in pp collisions

Λ_c*spectra underestimated by models

Λ_{c}^{+} cross section in pp collisions

ALICE

pp, $\sqrt{s} = 5.02 \text{ TeV}$

- Λ_{c} +spectra underestimated by pQCD calculations with fragmentation function tuned on leptonic collisions
- D^o spectra in agreement with the same calculations

arXiv:2011.06079

ALI-PUB-499722

arXiv:1901.07979

Λ_{c}^{+}/D^{0} ratio in pp collisions

- ALICE CERN
- Pythia 8 (Monash)^[1]: fragmentation function taken from e⁺e⁻ measurements
- PYTHIA 8 CR Mode 2^[2]: string formation beyond leading colour order
- Catania^[3]: coalescence and fragmentation in deconfined system
- SHM+RQM^[4]: statistical hadronisation model with additional charm states
- QCM^[5]: quark combination model assuming coalescence

[1] P. Skands, S. Carrazza, and J. Rojo, "Tuning PYTHIA 8.1: the Monash 2013 Tune", Eur. Phys. J.C 74 (2014) 3024, arXiv:1404.5630 [hep-ph].
[2] J. R. Christiansen and P. Z. Skands, "String Formation Beyond Leading Colour", JHEP 08 (2015) 003, arXiv:1505.01681 [hep-ph].
[3] V. Minissale, S. Plumari, and V. Greco, "Charm hadrons in pp collisions at LHC energy within a coalescence plus fragmentation approach", Phys. Lett. B 821 (2021) 136622, arXiv:2012.12001
[4] M. He and R. Rapp, "Charm-Baryon Production in Proton-Proton Collisions", Phys. Lett. B 795 (2019) 117–121, arXiv:1902.08889 [nucl-th].
[5] H. Li, F. Shao, and J. Song, "Production of light-flavor and single-charmed hadrons in pp collisions at ps = 5[02 TeV in an equal-velocity quark combination model", Chin. Phys. C 45 (2021) 113105, arXiv:2103.14900 [hep-ph]

Λ_{c}^{+}/D^{0} ratio in pp collisions

- Pythia 8 (Monash)^[1]: fragmentation function taken from e⁺e⁻ measurements
- PYTHIA 8 CR Mode 2^[2]: string formation beyond leading colour order
- Catania^[3]: coalescence and fragmentation in deconfined system
- SHM+RQM^[4]: statistical hadronisation model with additional charm states
- QCM^[5]: quark combination model assuming coalescence
- Significantly underpredicted by expectations from e⁺e⁻ collisions
- Models that modify hadronisation or include additional charm baryon states do better

CERN

ALICE

Results in p-Pb collisions

- Hint of shift of peak towards higher momentum
- Trend is reproduced by QCM model
- Hint of intermediate *p*[⊤] bump

- QCM^[1]: quark combination model assuming coalescence
- POWHEG+PYTHIA^[2]: NLO pQCD calculations coupled with MC parton shower
- POWLANG^[3]: uses the Langevin approach and Hard Thermal Loop (HTL) transport coefficients

[1] H. Li, F. Shao, and J. Song, "Production of light-flavor and single-charmed hadrons in pp collisions at ps = 5[02 TeV in an equal-velocity quark combination model", Chin. Phys. C 45 (2021) 113105, arXiv:2103.14900 [hep-ph]
[2] S. Frixione, P. Nason, and G. Ridolfi, "A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction", JHEP 09 (2007) 126, arXiv:0707.3088 [hep-ph].
[3] A. Beraudo, A. De Pace, M. Monteno, M. Nardi, and F. Prino, "Heavy-flavour production in high-energy d-Au and p-Pb collisions", JHEP 03 (2016) 123, arXiv:1512.05186 [hep-ph].

Results in Pb-Pb collisions

• Increasing trend at intermediate p_T : pp < semi-central Pb-Pb < central Pb-Pb

Results in Pb-Pb collisions

- Increasing trend at intermediate p_T: pp < semi-central Pb-Pb < central Pb-Pb
- Described by models with charm hadronisation via both fragmentation and coalescence

- SHMc^[1]: statistical hadronisation model
- Catania^[2]: coalescence and fragmentation in deconfined system
- TAMU^[3]: implements coalescence via a resonance recombination method

[1]A. Andronic et al., "The multiple-charm hierarchy in the statistical hadronization model", JHEP 07 (2021) 035, arXiv:2104.12754 [hep-ph]
[2] S. Plumari et al., "Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC", Eur. Phys. J. C 78 no. 4, (2018) 348, arXiv:1712.00730 [hep-ph]
[3] M. He and R. Rapp, "Hadronization and Charm-Hadron Ratios in Heavy-lon Collisions", Phys. Rev. Lett. 124 no. 4, (2020) 042301, arXiv:1905.09216 [nucl-th]

- Λ_c⁺ baryons are an excellent probe of hadronisation mechanisms in different collision systems at the LHC
- Λ_c⁺ baryon hadronisation modified in pp and p-Pb collisions with regard to e⁺e⁻ collisions
- The observed intermediate p_T production enhancement hints that Λ_c^+ production in Pb-Pb collisions could occur via both fragmentation and coalescence
- Higher-precision measurements will be done with Run3
 - Inner Tracker upgrade has greatly increased impact parameter resolution
 - Much higher data taking rate —> larger data samples collected