HADRON 2023





Marcel Lesch

on behalf of the ALICE Collaboration

**Technical University of Munich** 

08<sup>th</sup> of June 2023 HADRON 2023



 Equation of state (EoS) dependent on the particle composition and the possible interactions between them





- Equation of state (EoS) dependent on the particle composition and the possible interactions between them
- Pure neutron matter (PNM) supports heavy neutron stars of  $2M_{\odot}$



Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)

- Equation of state (EoS) dependent on the particle composition and the possible interactions between them
- Pure neutron matter (PNM) supports heavy neutron stars of  $2M_{\odot}$
- High baryonic densities allow for the existence of strange particles, e.g. Λ hyperons





- However: EoS can soften with appearance of  $\Lambda$  hyperons
  - $\rightarrow$  cannot support heavy neutron stars



Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)



- However: EoS can soften with appearance of  $\Lambda$  hyperons
  - $\rightarrow$  cannot support heavy neutron stars
- Three-body interactions such as  $\Lambda NN$  play an important role

More on  $\Lambda NN$ : Talk by Laura Šerkšnytė, 07.06.2023, 15:15



Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)



- Situation more complex: Appearance of multiple hyperon species possible, also Ξ and Σ
- Modelling of hyperons at large densities depends on hyperon-nucleon interactions
  → constrain from experimental data needed



- Scattering data limited to relative momenta above 40 MeV
- ΣN coupling not visible in scattering data
- Scattering data cannot differentiate between χEFT NLO13 and NLO19



NLO13: J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013) NLO19: J.Haidenbauer, U. Meiβner, Eur.Phys.J.A 56 (2020)



- Scattering data limited to relative momenta above 40 MeV
- ΣN coupling not visible in scattering data
- Scattering data cannot differentiate between χEFT NLO13 and NLO19
- ΣN coupling drives the behaviour of Λ at finite density
   → important for the EoS of NS



NLO15. J.Haidenbauer, N.Kaiser et al., NPA 515, 24 (2015) NLO19: J.Haidenbauer, U. Mei $\beta$ ner, Eur.Phys.J.A 56 (2020)

## **Two-body Femtoscopy**



L. Fabbietti and V. Mantovani Sarti, O. Vazquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377-402



# **Two-body Femtoscopy**

L. Fabbietti and V. Mantovani Sarti, O. Vazquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377-402



Marcel Lesch, HADRON 2023, 08.06.2023



## **Two-body Femtoscopy**

L. Fabbietti and V. Mantovani Sarti, O. Vazquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377-402



Marcel Lesch, HADRON 2023, 08.06.2023



## A Common Source for Baryon Emission

- Source distribution of particles from Gaussian core (r<sub>core</sub>) and decay of short lived particles
- Common source for pp and  $p\Lambda$  pairs!
- Measurement from pp
  - $\rightarrow$  r<sub>core</sub> constrained for any baryon-baryon pair!





#### A Common Source for Baryon Emission

- Source distribution of particles from Gaussian core (r<sub>core</sub>) and decay of short lived particles
- Common source for pp and  $p\Lambda$  pairs!
- Measurement from pp
  - → r<sub>core</sub> constrained for any baryon-baryon pair!





More information on the source: Talk by Dimitar Mihaylov, 05.06.2023, 17:40





# **ALICE - A Large Ion Collider Experiment**



• Data set: pp at  $\sqrt{s} = 13$  TeV (10<sup>9</sup> high-multiplicity events) ITS Direct detection of charged particles (protons, kaons, pions, deuterons) • Reconstruction of hyperons via decays: •  $\Xi^- \rightarrow \Lambda + \pi^-$ TPC Very good PID capabilities of the detector resulting in very pure samples TOF

•  $\Sigma^0 \to \Lambda + \gamma$ 

•  $\Lambda \rightarrow p + \pi^-$ 





# $p\Lambda$ Results before and after Femtoscopy





# $p\Lambda$ Results with Femtoscopy





ALICE, PLB 833 (2022), 137272

• New insights into

 $\Lambda N - \Sigma N$  dynamics

# $p\Lambda$ Results with Femtoscopy



- New insights into  $\Lambda N \Sigma N$  dynamics
- NLO19 potentials favoured:
  - $\rightarrow$  weaker  $\Lambda N \Sigma N$  coupling
  - $\rightarrow$  significant attraction of  $\Lambda$  at high densities
  - $\rightarrow$  large  $\Lambda NN$  repulsion needed

More on  $\Lambda NN$ : Talk by Laura Šerkšnytė, 07.06.2023, 15:15



# The $p\Sigma^0$ Interaction



- Reconstruction of  $\Sigma^0$  via decay to  $\Lambda + \gamma$
- $p\Sigma^0$  compatible to the baseline
- $p\Sigma^0$  femtoscopy already possible in Run 2
  - → stay tuned for data of Run 3 for higher statistics!



#### The "strangest" System: $p\Xi^-$



- Reconstruction of  $\Xi^-$  via decay to  $\Lambda + \pi^-$
- Coulomb interaction only cannot describe the data
  - $\rightarrow$  attractive strong interaction needed
- Lattice QCD calculations for  $p\Xi^-$  by HAL QCD collaboration HAL QCD, Nucl.Phys.A 998 (2020) 121737
- One of the first direct tests of Lattice QCD



ALI-PUB-483401

# Single Particle Potential of $\Xi^-$

- HAL QCD potential of  $p\Xi^-$  tested/verified with femtoscopic data
- Extraction of single-particle potential U<sub>Ξ</sub> by HAL QCD Collaboration
   → predictions in PNM:
  - $U_{\Xi} \sim + 6 \text{ MeV}$ HAL QCD Coll., PoS INPC2016 (2016) 277
  - $\rightarrow$  stiffening of the EoS



# **Updating the EoS**

Particle number per baryon



Two-body interaction ALICE pp  $\sqrt{s} = 13 \text{ TeV}$ Š ah-mult. (0-0.17% INEL>0) •  $p - \Lambda \oplus \overline{p} - \overline{\Lambda}$  pair Fit NI O19 (600) Residual p–Σ<sup>0</sup>: χEFT Besidual n–∓<sup>−</sup> ⊕ n–∓<sup>(</sup> Cubic baselir (\* 1.06 (\* 1.04 (\* 1.04 Š 1. ALICE pp √s = 13 TeV High-mult. (0-0.072% INEL>0)  $\circ p_{-\Sigma^{0}} \oplus \overline{p}_{-\overline{\Sigma^{0}}}$ - χEFT (NLO) - ESC16 300 k\* (MeV/c)





#### J. Schaffner-Bielich, I. Mishustin, PRC 53 (1996)

N. Hornick et al., PRC 98 (2018)

Mass vs Radius relation for hyperon stars



22

## **Summary and Outlook**

Femtoscopy with ALICE in small collision systems at the LHC:

- Study of previously difficult accessible hyperonnucleon interactions
  - First direct tests of Lattice QCD ( $p\Xi^-$ )
  - Sensitivity to different models with consequences for the EoS of neutron stars  $(p\Lambda)$
- Hyperon puzzle is solved?

Precision measurements of  $\Sigma N$  and three-body interactions necessary

 $\rightarrow$  Stay tuned for Run 3!





#### **Other Femtoscopy Talks:**

Valentina Mantovani Sarti, 05.06.2023, 14:30 Dimitar Mihaylov, 05.06.2023, 17:40 Wioleta Rzęsa, 07.06.2023, 14:24 Laura Šerkšnytė, 07.06.2023, 15:15 Ramona Lea, 08.06.2023, 15:45

# Backup

Marcel Lesch, HADRON 2023, 08.06.2023





# $\Sigma^0$ Invariant Mass







ALICE, Phys. Lett. B 811 (2020) 135849



#### **Gaussian source**

**Different source size** for p-p and p- $\Lambda$  pairs

- The Statistical Hadronization Model tells us: c.a.  $\frac{2}{3}$  of protons and  $\Lambda$ s stem from resonances. The average lifetimes (ct) are: 1.6 fm for X $\rightarrow$ proton 4.7 fm for X $\rightarrow$ A
- Production through short-lived resonances



#### **Emission source – Possible Profiles**

ALICE

Perfect Gaussian



Radial flow Expansion with const. velocity, different effect on different masses



Local modifications due to elliptic flow





- Resonances with cτ ~ 1 fm (Δ,N\*, etc.) introduce an exponential tail to the source
- Different for each particle species

# Femtoscopy - Decomposition of C(k\*)



 Amount of impurities and secondaries based on a data-driven MC study as done in <u>Phys.Rev. C99 (2019) no.2, 024001</u>



- Purity ( $\mathcal{P}$ ) from fits to the invariant mass distribution or MC data
- Feed-down fractions (f) from MC template fits
- $\lambda_i = \mathcal{P}_{i_1} f_{i_1} \mathcal{P}_{i_2} f_{i_2}$ , where  $i_{1,2}$  denote the two particles of the *i*-th contribution

## $p\Lambda$ Results with Femtoscopy









#### Influence of the $\Lambda N - \Sigma N$ coupled channel (vacuum)



- Small mass difference between Σ and Λ: ~80 MeV/c
- Repulsion for  $\Lambda p$  when the  $\Lambda N \Sigma N$  coupled channel is neglected



J. Haidenbauer *et al.*, Eur. Phys. A (2017) 53, 121.

#### Influence of the $\Lambda N - \Sigma N$ coupled channel





- $\Lambda N \Sigma N$  acts as an effective attraction
- Repulsion for  $\Lambda p$  when the  $\Lambda N \Sigma N$  coupled channel is neglected
  - strong coupling ⇒ dispersion repulsive effects ⇒ Shift of hyperon appearance towards higher densities
  - weak coupling  $\Rightarrow$  more attractive  $U_{\Lambda}(\rho_0, 0)$



J. Haidenbauer *et al.*, Eur. Phys. A (2017) 53, 121.

# $p \Xi^-$ Potential



ALICE Coll. Nature 588, 232–238 (2020) 100 0  $-p-\Xi^-$  HAL QCD I = 0, S = 0-100 — p–Ω<sup>-</sup> HAL QCD I = 1/2, S = 2V(r) (MeV) 10 -200  $---- p - \Xi^- HAL QCD I = 0, S = 0$ = =  $p - \Xi^-$  HAL QCD  $p-\Omega^-$  HAL QCD I = 1/2, S = 2-300 5 C(k\*) -400 50 100 150 200 -500 k\*(MeV) 2 0 r (fm)

#### **Ξ<sup>-</sup> Potential**



- Extraction of single-particle potential  $U_{\Xi}$  by HAL QCD Collaboration
- Predictions in SNM:

