

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

Phenomenology of hyperon non-leptonic decays

Nora Salone

National Centre for Nuclear Research

20th International Conference on Hadron Spectroscopy and Structure HADRON 2023

5th-9th June 2023

Hyperon non-leptonic decays

Hyperon non-leptonic decays

Focus on:

▶ $Y\bar{Y}$ spin-entangled pairs produced at e^+e^- collider: feasibility studies.

Hyperon non-leptonic decays

Focus on:

- ▶ $Y\bar{Y}$ spin-entangled pairs produced at e^+e^- collider: feasibility studies.
- *Y* decays theoretical description in χ PT.

Weak parity-conserving (P) and -violating (S) amplitudes

 $\mathcal{A} = S + P \vec{\sigma} \cdot \hat{n}$

Weak parity-conserving (P) and -violating (S) amplitudes

 $\mathcal{A} = S + P \vec{\sigma} \cdot \hat{n}$

CP-odd and final state interaction phases [Donoghue et al.(1986)]

$$\begin{split} S &= |S| \exp{(i\xi_S)} \exp{(i\delta_S)} \\ P &= |P| \exp{(i\xi_P)} \exp{(i\delta_P)} \end{split}$$

Weak parity-conserving (P) and -violating (S) amplitudes

 $\mathcal{A} = S + P \vec{\sigma} \cdot \hat{n}$

CP-odd and final state interaction phases [Donoghue et al.(1986)]

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Weak parity-conserving (P) and -violating (S) amplitudes

 $\mathcal{A} = S + P \vec{\sigma} \cdot \hat{n}$

CP-odd and final state interaction phases [Donoghue et al.(1986)]

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Weak parity-conserving (P) and -violating (S) amplitudes

 $\mathcal{A} = S + P \vec{\sigma} \cdot \hat{n}$

CP-odd and final state interaction phases [Donoghue et al.(1986)]

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Two measurable parameters

$$\alpha = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}$$

Two CP violation tests

$$A_{\rm CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}$$

Weak parity-conserving (P) and -violating (S) amplitudes

 $\mathcal{A} = S + P \vec{\sigma} \cdot \hat{n}$

CP-odd and final state interaction phases [Donoghue et al.(1986)]

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Two measurable parameters

$$\begin{split} \boldsymbol{\alpha} &= \frac{2\mathfrak{R}(S^*P)}{|S|^2 + |P|^2}\\ \boldsymbol{\beta} &= \frac{2\mathfrak{I}(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi \end{split}$$

Two CP violation tests

$$A_{\rm CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}$$
$$\Phi_{\rm CP} = \frac{\phi + \bar{\phi}}{2}$$

Motivation: new data landscape

nature physics LETTERS https://doi.org/10.1038/s41567-019-0494-8

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

[Nature Phys. 15 (2019) 631]

Motivation: new data landscape

nature physics LETTERS https://doi.org/10.1038/s41567-019-0494-8

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

[Nature Phys. 15 (2019) 631]

Article | Open Access | Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

 Nature
 606, 64–69 (2022)
 Cite this article

 11k
 Accesses
 7
 Citations
 96
 Altmetric
 Metrics

[Nature 606, 64-69 (2022)]

PHYSICAL REVIEW LETTERS

lightights Recent Accepted Collections Authors Referees Search Press About
OpenAccess by Pro

Precise Measurements of Decay Parameters and CP Asymmetry with Entangled $\Lambda-\bar{\Lambda}$ Pairs

M. Ablikim et al. (BESII Colleboration) Phys. Rev. Lett. 129, 131801 – Published 22 September 2022

[Phys.Rev.Lett. 129 (2022) 131801]

CPV in hyperon decays

$$S, P = f(\xi_{S,P}, \delta_{S,P}) \implies \begin{cases} \alpha \propto \mathfrak{R}(S^*P) \\ \sin \phi \propto \mathfrak{I}(S^*P) \end{cases}$$

S, *P* amplitudes expanded up to LO $\Delta I = 1/2$ linear corrections [Salone et al. (2022)]

CPV in hyperon decays

$$S, P = f(\xi_{S,P}, \delta_{S,P}) \implies \begin{cases} \alpha \propto \Re(S^*P) \\ \sin \phi \propto \Im(S^*P) \end{cases}$$

S, *P* amplitudes expanded up to LO $\Delta I = 1/2$ linear corrections [Salone et al. (2022)]

$$A_{CP} = -\tan(\delta_P - \delta_S) \tan(\xi_P - \xi_S)$$
$$\Phi_{CP} = \frac{\alpha}{\sqrt{1 - \alpha^2}} \cos\phi \tan(\xi_P - \xi_S)$$

CPV in hyperon decays

$$S, P = f(\xi_{S,P}, \delta_{S,P}) \implies \begin{cases} \alpha \propto \Re(S^*P) \\ \sin \phi \propto \Im(S^*P) \end{cases}$$

S, *P* amplitudes expanded up to LO $\Delta I = 1/2$ linear corrections [Salone et al. (2022)]

$$A_{\rm CP} = -\tan(\delta_P - \delta_S) \tan(\xi_P - \xi_S)$$
$$\Phi_{\rm CP} = \frac{\alpha}{\sqrt{1 - \alpha^2}} \cos\phi \tan(\xi_P - \xi_S)$$

first measurement of CP-odd phase difference

[BESIII collab. (2022)] :
$$\xi_P - \xi_S = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$$
 rad
SM : $\xi_P - \xi_S = (-2.1 \pm 1.7) \times 10^{-4}$ rad

Lowest-lying hyperons @ BESIII

- World's largest charmonia sample in **BESIII** $10^{10} J/\psi$, $3 \times 10^9 \psi(2S)$
- Baryon-antibaryon production in spin-entangled state

[V. Batozskaya, BEACH22]

Decay	$\mathcal{B}(\times 10^{-4})$	$lpha_{m{\psi}}$	$\Delta \Phi$ (rad)	BESIII collaboration
$J/\psi \to \Lambda \bar{\Lambda}$	19.43(3)	0.461(9)	0.740(13)	[2019, 2017a]
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	15.0(24)	-0.508(7)	-0.270(15)	[2008, 2020]
$J/\psi \to \Sigma^- \bar{\Sigma}^+$				ongoing analysis
$J/\psi \to \Sigma^0 \bar{\Sigma}^0$	11.64(4)	-0.449(20)		[2017a]
$J/\psi \to \Xi^0 \bar{\Xi}^0$	11.65(43)	0.66(6)		[2017b]
$J/\psi \to \Xi^- \bar{\Xi}^+$	9.7(8)	0.586(16)	1.213(48)	[2020, 2022]

Baryon polarization @ BESIII

 $\vec{\mathbf{P}}_{B}$ polarization:

Final *b* angular distribution:

$$\mathbf{P}_{B,y}(\cos\theta) = \frac{\sqrt{1 - \alpha_{\psi}^2 \cos\theta \sin\theta}}{1 + \alpha_{\psi} \cos^2\theta} \sin(\Delta\Phi) \qquad \qquad \frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} \propto 1 + \alpha_B \vec{\mathbf{P}}_B \cdot \hat{\mathbf{n}}$$

Baryon polarization @ BESIII

 $\vec{\mathbf{P}}_B$ polarization:

Final *b* angular distribution:

$$\mathbf{P}_{B,y}(\cos\theta) = \frac{\sqrt{1 - \alpha_{\psi}^{2} \cos\theta \sin\theta}}{1 + \alpha_{\psi} \cos^{2}\theta} \sin(\Delta\Phi) \qquad \qquad \frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} \propto 1 + \alpha_{B}\vec{\mathbf{P}}_{B} \cdot \hat{\mathbf{n}}$$
Joint $B\bar{B}$ density matrix [Perotti et al. (2019)]:

$$\rho_{B\bar{B}} = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} \sigma_{\mu}^{B} \otimes \sigma_{\nu}^{\bar{B}}$$

covering particles, fields, gravitation, and cosmology

Open Access

Study of CP violation in hyperon decays at super-charm-tau factories with a polarized electron beam

Nora Salone, Patrik Adlarson, Varvara Batozskaya, Andrzej Kupsc, Stefe Phys. Rev. D **105**, 116022 – Published 27 June 2022

 $ho_{Bar{B}} = \sum_{\mu,
u=0}^{J} C_{\mu
u} \sigma^B_{\mu} \otimes \sigma^{ar{B}}_{
u}$ [Perotti et al. (2019)]

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Open Access

Study of CP violation in hyperon decays at super-charm-tau factories with a polarized electron beam

Nora Salone, Patrik Adlarson, Varvara Batozskaya, Andrzej Kupsc, Stefa Phys. Rev. D **105**, 116022 – Published 27 June 2022

$$\rho_{B\bar{B}} = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} \sigma^{B}_{\mu} \otimes \sigma^{\bar{B}}_{\nu}$$
[Perotti et al. (2019)]

With a **polarized** e^- beam [Salone et al. (2022)]:

PHYSICAL REVIEW D covering particles, fields, gravitation, and cosmology

Study of *CP* violation in hyperon decays at super-charm-tau factories with a polarized electron beam

Nora Salone, Patrik Adlarson, Varvara Batozskaya, Andrzej Kupsc, Stefa Phys. Rev. D 105, 116022 - Published 27 June 2022

$$\rho_{B\bar{B}} = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} \sigma^{B}_{\mu} \otimes \sigma^{\bar{B}}_{\nu}$$
[Perotti et al. (2019)]

With a **polarized** e^- beam [Salone et al. (2022)]: $\mathbf{P}_{B,x}, \mathbf{P}_{B,z} \neq 0$

$$C_{\mu\nu} = \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta & \gamma_{\psi} P_{e} \sin\theta & \beta_{\psi} \sin\theta \cos\theta & (1 + \alpha_{\psi}) P_{e} \cos\theta \\ \gamma_{\psi} P_{e} \sin\theta & \sin^{2}\theta & 0 & \gamma_{\psi} \sin\theta \cos\theta \\ -\beta_{\psi} \sin\theta \cos\theta & 0 & \alpha_{\psi} \sin^{2}\theta & -\beta_{\psi} P_{e} \sin\theta \\ -(1 + \alpha_{\psi}) P_{e} \cos\theta & -\gamma_{\psi} \sin\theta \cos\theta & -\beta_{\psi} P_{e} \sin\theta & -\alpha_{\psi} - \cos^{2}\theta \end{pmatrix}$$

PHYSICAL REVIEW D covering particles, fields, gravitation, and cosmology

Open Access

Study of CP violation in hyperon decays at super-charm-tau factories with a polarized electron beam

Nora Salone, Patrik Adlarson, Varvara Batozskaya, Andrzej Kupsc, Stefe Phys. Rev. D **105**, 116022 – Published 27 June 2022

$$\rho_{B\bar{B}} = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} \sigma^{B}_{\mu} \otimes \sigma^{\bar{B}}_{\nu}$$
[Perotti et al. (2019)]

With a **polarized** e^- beam [Salone et al. (2022)]: $\mathbf{P}_{B,x}, \mathbf{P}_{B,z} \neq 0$

$$C_{\mu\nu} = \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta & \gamma_{\psi}P_{e}\sin\theta & \beta_{\psi}\sin\theta\cos\theta & (1 + \alpha_{\psi})P_{e}\cos\theta \\ \gamma_{\psi}P_{e}\sin\theta & \sigma^{2}\theta & 0 & \gamma_{\psi}\sin\theta\cos\theta \\ -\beta_{\psi}\sin\theta\cos\theta & \sigma^{2}\theta & 0 & \gamma_{\psi}\sin\theta\cos\theta \\ -(1 + \alpha_{\psi})P_{e}\cos\theta & -\gamma_{\psi}\sin\theta\cos\theta & -\beta_{\psi}P_{e}\sin\theta & -\alpha_{\psi}-\cos^{2}\theta \end{pmatrix}$$

CP tests uncertainties, P_e -dependent:

• Quantifiable improvement in predicted uncertainties with $P_e \neq 0$

• Additional information to $\vec{\mathbf{P}}_B$ and spin-entanglement contributions

CP tests uncertainties, P_e -dependent:

• Quantifiable improvement in predicted uncertainties with $P_e \neq 0$

Additional information to $\vec{\mathbf{P}}_B$ and spin-entanglement contributions Beam polarization: a useful tool on the road to reach SM CPV uncertainties!

Nonleptonic decays review¹

New data situation from BESIII calls for an update of theoretical predictions:

Focus on $\Delta S = 1$, $B \rightarrow b\pi$ decays in χ PT up to 1-loop corrections

¹NAWA grant no. PPN/STA/2021/1/00011/U/00001

Nonleptonic decays review¹

New data situation from BESIII calls for an update of theoretical predictions:

- Focus on $\Delta S = 1$, $B \rightarrow b\pi$ decays in χPT up to 1-loop corrections
- ► Goal: updated values of *S*, *P* amplitudes and baryon-meson coupling

¹NAWA grant no. PPN/STA/2021/1/00011/U/00001

Nonleptonic decays review¹

New data situation from BESIII calls for an update of theoretical predictions:

- Focus on $\Delta S = 1$, $B \rightarrow b\pi$ decays in χPT up to 1-loop corrections
- ► Goal: updated values of *S*, *P* amplitudes and baryon-meson coupling
- joint, ongoing collaboration Warsaw Uppsala Valencia

¹NAWA grant no. PPN/STA/2021/1/00011/U/00001

Starting point

Hyperon non-leptonic decays in chiral perturbation theory

Elizabeth Jenkins

Starting point

Hyperon non-leptonic decays in chiral perturbation theory

Elizabeth Jenkins

Previous studies:

 Decay amplitudes computed in heavy-baryon approximation.

Previous studies:

- Decay amplitudes computed in heavy-baryon approximation.
- Correct power-counting, but shifting of analytical properties.

Previous studies:

- Decay amplitudes computed in heavy-baryon approximation.
- Correct power-counting, but shifting of analytical properties.
- Good description of S-waves, large chiral correction to P-waves [Jenkins(1992),Borasoy et al.(1999),El-Hady et al.(2000)].

Previous studies:

- Decay amplitudes computed in heavy-baryon approximation.
- Correct power-counting, but shifting of analytical properties.
- Good description of S-waves, large chiral correction to P-waves [Jenkins(1992),Borasoy et al.(1999),El-Hady et al.(2000)].

Our goal:

Decay amplitudes computed in fully relativistic framework.

Previous studies:

- Decay amplitudes computed in heavy-baryon approximation.
- Correct power-counting, but shifting of analytical properties.
- Good description of S-waves, large chiral correction to P-waves [Jenkins(1992),Borasoy et al.(1999),El-Hady et al.(2000)].

Our goal:

- Decay amplitudes computed in fully relativistic framework.
- EOMS-fixed power-counting, included higher-order terms.

Previous studies:

- Decay amplitudes computed in heavy-baryon approximation.
- Correct power-counting, but shifting of analytical properties.
- Good description of S-waves, large chiral correction to P-waves [Jenkins(1992),Borasoy et al.(1999),El-Hady et al.(2000)].

Our goal:

- Decay amplitudes computed in fully relativistic framework.
- EOMS-fixed power-counting, included higher-order terms.
- First attempt at computing such decay amplitudes in relativistic *x*PT.

Previous studies:

- Decay amplitudes computed in heavy-baryon approximation.
- Correct power-counting, but shifting of analytical properties.
- Good description of S-waves, large chiral correction to P-waves [Jenkins(1992),Borasoy et al.(1999),El-Hady et al.(2000)].

Our goal:

- Decay amplitudes computed in fully relativistic framework.
- EOMS-fixed power-counting, included higher-order terms.
- First attempt at computing such decay amplitudes in relativistic *χ*PT.

How do new data + relativistic approach affect *S*, *P*-wave description?

Preliminary results

Decay	S	Sold	Р	Pold
$\Sigma^+ \to n\pi^+$	0.06(1)	0.06(1)	1.81(1)	1.81(1)
$\Sigma^+ \to p \pi^0$	-1.38(2)	-1.43(5)	1.24(3)	1.17(7)
$\Sigma^- \rightarrow n\pi^-$	1.88(1)	1.88(1)	-0.06(1)	-0.06(1)
$\Lambda \rightarrow p \pi^-$	1.38(1)	1.42(1)	0.63(1)	0.52(2)
$\Lambda \rightarrow n\pi^0$	-1.03(1)	-1.04(1)	-0.41(1)	-0.39(4)
$\Xi^- \to \Lambda \pi^-$	-1.99(1)	-1.98(1)	0.39(1)	0.48(2)
$\Xi^0 \to \Lambda \pi^0$	1.51(1)	1.52(2)	0.27(1)	0.33(2)

Table: Comparison between amplitude values [Jenkins(1992)].

- **BESIII** collab.: 5σ deviation on α_{Λ} value.
- Updated CPV tests on $Y \Delta S = 1$ decays in current and next-gen e^+e^- colliders.

- **BESIII** collab.: 5σ deviation on α_{Λ} value.
- Updated CPV tests on $Y \Delta S = 1$ decays in current and next-gen e^+e^- colliders.
- Impact of polarized e^- beam on CPV tests sensitivities compared to SM.

- **BESIII** collab.: 5σ deviation on α_{Λ} value.
- Updated CPV tests on $Y \Delta S = 1$ decays in current and next-gen e^+e^- colliders.
- Impact of polarized e^- beam on CPV tests sensitivities compared to SM.
- Review of theoretical description in view of the new data and current methods: independent constraints on S, P waves (ongoing analysis).

- **BESIII** collab.: 5σ deviation on α_{Λ} value.
- Updated CPV tests on $Y \Delta S = 1$ decays in current and next-gen e^+e^- colliders.
- Impact of polarized e^- beam on CPV tests sensitivities compared to SM.
- Review of theoretical description in view of the new data and current methods: independent constraints on S, P waves (ongoing analysis).

Thank you for the attention!