Light Meson Decays at BESI

Ilaria BALOSSINO

on behalf of the BESIII collaboration

balossino@fe.infn.it

INFN FERRARA

IHEP CAS Beijing

Light Meson Decays

- Improve the knowledge on low energy QCD
- Test Chiral Perturbation Theory predictions
- Study Form Factors

WHY

- Test fundamental symmetries
- Search for charge conjugation violation
- Search for new physics BSM

Light Meson Decays

- Improve the knowledge on low energy QCD
- Test Chiral Perturbation Theory predictions
- Study Form Factors
- Test fundamental symmetries
- Search for charge conjugation violation
- Search for new physics BSM

Institute of High Energy Physics

- Since $2009 \rightarrow$ up until 2030
- Electron-Positron Collider
- Energy range: $2.00 \div 4.96 \text{ GeV}$
- Peak luminosity of the IP: 10^{33} cm⁻² s⁻¹
- τ -charm physics

Institute of High Energy Physics

- Since $2009 \rightarrow$ up until 2030
- Electron-Positron Collider
- Energy range: $2.00 \div 4.96 \text{ GeV}$
- Peak luminosity of the IP: 10^{33} cm⁻² s⁻¹

10B of J/ψ !

Light Meson Factory

• τ -charm physics

$$J/\psi \to \gamma \,\eta/\eta' \Longrightarrow 1 \times 10^7 \eta \,/ \, 5.2 \times 10^7 \eta$$

$$J/\psi \to \phi \,\eta/\eta' \Longrightarrow 4 \times 10^6 \eta \,/\, 2.5 \times 10^6 \eta'$$

Hadronic decays Radiative decays Rare and forbidden decays

$\eta' \to 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0$	First Observation - BR	PRL112, 251801 (2014)
$\eta' \to \gamma e^+ e^-$	First Observation - BR - TFF	PRD92, 012001 (2015)
$\eta \to \pi^+ \pi^- \pi^0, \eta/\eta' \to \pi^0 \pi^0 \pi^0$	$Matrix \ Elements \ \textbf{-} \ m_u - m_d$	PRD92, 012014 (2015)
$\eta' \to \omega e^+ e^-$	First Observation - BR	PRD92, 051101 (2015)
$\eta' \to K\pi$	Weak Decay - UL	PRD93, 072008 (2016)
$\eta' o ho \pi$	First Observation - BR	PRL118, 012001 (2017)
$\eta' o \gamma \gamma \pi^0$	BR - B Boson	PRD96, 012005 (2017)
$\eta' \to \gamma \pi^+ \pi^-$	BR - Box anomaly	PRL120, 242003 (2018)
$\eta \to \pi^+ \pi^- \eta, \eta' \to \pi^0 \pi^0 \eta$	Matrix elemts - Cusp Effect	PRD97, 012003 (2018)
$\omega \to \pi^+ \pi^- \pi^0$	Dalitz plot analysis	PRD98, 112007 (2018)
$P ightarrow \gamma \gamma$	BRs - Chiral anomaly	PRD97, 072014 (2018)
$\eta' o \gamma \gamma \eta$	UL	PRD100, 052015 (2019)
Absolute BR of η' decays	BRs	PRL122, 142002 (2019)
$\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$	CP violation - UL	PRD101, 032001 (2020)
$\eta' \to \pi^+\pi^- e^+ e^-$	BR - CP violation asymmetries	PRD103, 092005 (2021)
$\eta' \to \pi^+ \pi^- \mu^+ \mu^-$	BR - Decay dynamics	PRD103, 072006 (2021)
Absolute BR of η decays	BRs	PRD104, 092004 (2021)
$\eta' o \pi^0 \pi^0 \eta$	Cusp effect	PRL130, 081901 (2023)
	$\begin{split} \eta' &\rightarrow 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0 \\ \eta' &\rightarrow \gamma e^+ e^- \\ \eta &\rightarrow \pi^+\pi^-\pi^0, \eta/\eta' \rightarrow \pi^0\pi^0\pi^0 \\ \eta' &\rightarrow \omega e^+ e^- \\ \eta' &\rightarrow \kappa\pi \\ \eta' &\rightarrow \rho\pi \\ \eta' &\rightarrow \gamma \eta^0 \\ \eta' &\rightarrow \gamma \eta^+\pi^- \\ \eta &\rightarrow \pi^+\pi^-\eta, \eta' &\rightarrow \pi^0\pi^0\eta \\ \omega &\rightarrow \pi^+\pi^-\pi^0 \\ P &\rightarrow \gamma \gamma \\ \eta' &\rightarrow \gamma \gamma \eta \\ Absolute BR of \eta' decays \\ \eta' &\rightarrow \pi^0\pi^0\pi^0\pi^0 \\ \eta' &\rightarrow \pi^+\pi^-\mu^+\mu^- \\ Absolute BR of \eta decays \\ \eta' &\rightarrow \pi^0\pi^0\eta \\ \end{split}$	$\eta' \to 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0$ First Observation - BR $\eta' \to \gamma e^+e^-$ First Observation - BR - TFF $\eta \to \pi^+\pi^-\pi^0, \eta/\eta' \to \pi^0\pi^0\pi^0$ Matrix Elements - $m_u - m_d$ $\eta' \to \omega e^+e^-$ First Observation - BR $\eta' \to K\pi$ Weak Decay - UL $\eta' \to \rho\pi$ First Observation - BR $\eta' \to \gamma \eta \pi^0$ BR - B Boson $\eta' \to \gamma \eta^+\pi^-$ BR - Box anomaly $\eta \to \pi^+\pi^-\eta, \eta' \to \pi^0\pi^0\eta$ Matrix elemts - Cusp Effect $\omega \to \pi^+\pi^-\pi^0$ Dalitz plot analysis $P \to \gamma \gamma$ BRs - Chiral anomaly $\eta' \to \pi^0\pi^0\pi^0\pi^0$ CP violation - UL $\eta' \to \pi^+\pi^-e^+e^-$ BR - CP violation asymmetries $\eta' \to \pi^+\pi^-\mu^+\mu^-$ BR - Decay dynamics $\eta' \to \pi^0\pi^0\eta$ Cusp effect

$$J/\psi \to \gamma \,\eta/\eta' \Longrightarrow 1 \times 10^7 \eta \,/ \,5.2 \times 10^7 \eta$$

$$J/\psi \to \phi \,\eta/\eta' \Longrightarrow 4 \times 10^6 \eta \,/\, 2.5 \times 10^6 \eta'$$

Hadronic decays Radiative decays Rare and forbidden decays

$\eta' \to 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0$	First Observation - BR	PRL112, 251801 (2014)
$\eta' \to \gamma e^+ e^-$	First Observation - BR - TFF	PRD92, 012001 (2015)
$\eta \to \pi^+ \pi^- \pi^0, \eta/\eta' \to \pi^0 \pi^0 \pi^0$	$Matrix \ Elements \ \textbf{-} \ m_u - m_d$	PRD92, 012014 (2015)
$\eta' \to \omega e^+ e^-$	First Observation - BR	PRD92, 051101 (2015)
$\eta' \to K\pi$	Weak Decay - UL	PRD93, 072008 (2016)
$\eta' \to \rho \pi$	First Observation - BR	PRL118, 012001 (2017)
$\eta' o \gamma \gamma \pi^0$	BR - B Boson	PRD96, 012005 (2017)
$\eta' \to \gamma \pi^+ \pi^-$	BR - Box anomaly	PRL120, 242003 (2018)
$\eta \to \pi^+ \pi^- \eta, \eta' \to \pi^0 \pi^0 \eta$	Matrix elemts - Cusp Effect	PRD97, 012003 (2018)
$\omega \to \pi^+ \pi^- \pi^0$	Dalitz plot analysis	PRD98, 112007 (2018)
$P ightarrow \gamma \gamma$	BRs - Chiral anomaly	PRD97, 072014 (2018)
$\eta' o \gamma \gamma \eta$	UL	PRD100, 052015 (2019)
Absolute BR of η' decays	BRs	PRL122, 142002 (2019)
$\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$	CP violation - UL	PRD101, 032001 (2020)
$\eta' \to \pi^+\pi^-e^+e^-$	BR - CP violation asymmetries	PRD103, 092005 (2021)
$\eta' \to \pi^+\pi^-\mu^+\mu^-$	BR - Decay dynamics	PRD103, 072006 (2021)
Absolute BR of η decays	BRs	PRD104, 092004 (2021)
$\eta' \to \pi^0 \pi^0 \eta$	Cusp effect	PRL130, 081901 (2023)

First observation with 80 statistical significance

 $B(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = (1.97 \pm 0.33_{\text{stat}} \pm 0.19_{\text{syst}}) \times 10^{-5}$

THEORY	Hidden Gauge Model	Modified Vector Meson Dominance Model	Chiral Unitary Approach
BR	$(2.20 \pm 0.30) \times 10^{-5}$	$(2.41 \pm 0.25) \times 10^{-5}$	$(1.57^{+0.96}_{-0.75}) \times 10^{-5}$
	arXiv: 1010.2378		EPJA 33(2007) 95

Good agreement with theoretical predictions; Reasonable ability of the theoretical model to describe the **intermediate processes**

First observation with 80 statistical significance

$$B(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = (1.97 \pm 0.33_{\text{stat}} \pm 0.19_{\text{syst}}) \times 10^{-5}$$

	THEORY	Hidden Gauge Model	Modified Vector Meson Dominance Model	Chiral Unitary Approach
	BR	$(2.20 \pm 0.30) \times 10^{-5}$	$(2.41 \pm 0.25) \times 10^{-5}$	$(1.57^{+0.96}_{-0.75}) \times 10^{-5}$
9			arXiv: 1010.2378	EPJA 33(2007) 95

Good agreement with theoretical predictions; Reasonable ability of the theoretical model to describe the **intermediate processes**

First observation with 80 statistical significance

$$B(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = (1.97 \pm 0.33_{\text{stat}} \pm 0.19_{\text{syst}}) \times 10^{-5}$$

	THEORY	Hidden Gauge Model	Modified Vector Meson Dominance Model	Chiral Unitary Approach
	BR	$(2.20 \pm 0.30) \times 10^{-5}$	$(2.41 \pm 0.25) \times 10^{-5}$	$(1.57^{+0.96}_{-0.75}) \times 10^{-5}$
10			arXiv: 1010.2378	EPJA 33(2007) 95

Good agreement with theoretical predictions; Reasonable ability of the theoretical model to describe the intermediate processes

	THEORY Hidden Gauge Model		Modified Vector Meson Dominance Model	Chiral Unitary Approach	
	BR	$(2.17 \pm 0.21) \times 10^{-3}$	$(2.27 \pm 0.13) \times 10^{-3}$	$(2.13^{+0.17}_{-0.31}) \times 10^{-3}$	
11			arXiv: 1010.2378	EPJA 33(2007) 95	

$$A_{\varphi} = \frac{N(\sin 2\varphi > 0) - N(\sin 2\varphi < 0)}{N(\sin 2\varphi > 0) + N(\sin 2\varphi < 0)} = (2.9 \pm 3.7_{stat} \pm 1.1_{syst})\%$$

N (x) = acceptance-corrected number of events in the corresponding angular region

The precision is comparable with the one obtained with K⁰_L, but the size of the asymmetry is smaller than the SM driven effect observed in K⁰_L decays

	THEORY Hidden Gauge Model		Modified Vector Meson Dominance Model	Chiral Unitary Approach	
	BR	$(2.17 \pm 0.21) \times 10^{-3}$	$(2.27 \pm 0.13) \times 10^{-3}$	$(2.13^{+0.17}_{-0.31}) \times 10^{-3}$	
12		arXiv: 1010.2378		EPJA 33(2007) 95	

$$A_{\varphi} = \frac{N(\sin 2\varphi > 0) - N(\sin 2\varphi < 0)}{N(\sin 2\varphi > 0) + N(\sin 2\varphi < 0)} = (2.9 \pm 3.7_{stat} \pm 1.1_{syst})\%$$

N(x) = acceptance-corrected number of events in the corresponding angular region

The precision is comparable with the one obtained with K^{0}_{L} , but the size of the asymmetry is smaller than the SM driven effect observed in K^{0}_{L} decays

	THEORY Hidden Gauge Model		Modified Vector Meson Dominance Model	Chiral Unitary Approach	
	BR	$(2.17 \pm 0.21) \times 10^{-3}$	$(2.27 \pm 0.13) \times 10^{-3}$	$(2.13^{+0.17}_{-0.31}) \times 10^{-3}$	
13		arXiv: 1010.2378		EPJA 33(2007) 95	

$$A_{\varphi} = \frac{N(\sin 2\varphi > 0) - N(\sin 2\varphi < 0)}{N(\sin 2\varphi > 0) + N(\sin 2\varphi < 0)} = (2.9 \pm 3.7_{stat} \pm 1.1_{syst})\%$$

N(x) = acceptance-corrected number of events in the corresponding angular region

is consistent with zero

The precision is comparable with the one obtained with K⁰_L, but the size of the asymmetry is smaller than the SM driven effect observed in K⁰_L decays

$η' \rightarrow π^0 π^0 η$

- Study the fundamental properties of QCD at low energies
- Test effective ChPT
- Investigation on $\pi\pi$ and $\pi\eta$ final interactions
- Sizeable cusp effect in this decay

The S-wave charge-exchange rescattering $\pi + \pi - \rightarrow \pi^0 \pi^0$ causes a prominent cusp at the center of mass energy corresponding to the summed mass of two charged pions.

Sample 8 times larger than the previous analysis

PRL130, 081901 (2023)

$η' \rightarrow π^0 π^0 η$

- Study the fundamental properties of QCD at low energies
- Test effective ChPT
- Investigation on $\pi\pi$ and $\pi\eta$ final interactions
- Sizeable cusp effect in this decay

The S-wave charge-exchange rescattering $\pi + \pi - \rightarrow \pi^0 \pi^0$ causes a prominent cusp at the center of mass energy corresponding to the summed mass of two charged pions.

Sample 8 times larger than the previous analysis

PRL130, 081901 (2023)

$η' \rightarrow π^0 π^0 η$

- Study the fundamental properties of QCD at low energies
- Test effective ChPT
- Investigation on $\pi\pi$ and $\pi\eta$ final interactions
- Sizeable cusp effect in this decay

The S-wave charge-exchange rescattering $\pi + \pi - \rightarrow \pi^0 \pi^0$ causes a prominent cusp at the center of mass energy corresponding to the summed mass of two charged pions.

Sample 8 times larger than the previous analysis

PRL130, 081901 (2023)

As the BFs of the rare decays are obtained via normalization to the dominant decay modes, a precise determination of the BFs of the dominant decay modes of the η and η' is essential

- Reconstruct the inclusive photon spectrum from radiative J/ψ decays
- The radiative photon converts to $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$
- Excellent momentum resolution for electrons @MDC

 $B(J/\psi \to \gamma \eta) = (1.067 \pm 0.005_{\text{stat}} \pm 0.023_{\text{syst}}) \times 10^{-3}$

$$J/\psi \to \gamma \eta) = (1.108 \pm 0.027) \times 10^{-3}$$

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

η' → PRL122, 142002 (2019)

B(,

As the BFs of the rare decays are obtained via normalization to the dominant decay modes, a precise determination of the BFs of the dominant decay modes of the η and η' is essential

- Reconstruct the inclusive photon spectrum from radiative J/ψ decays
- The radiative photon converts to $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$
- Excellent momentum resolution for electrons @MDC

 $B(J/\psi \to \gamma \eta) = (1.067 \pm 0.005_{\text{stat}} \pm 0.023_{\text{syst}}) \times 10^{-3}$

$$(J/\psi \to \gamma \eta) = (1.108 \pm 0.027) \times 10^{-3}$$

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

η' → PRL122, 142002 (2019)

18

B

As the BFs of the rare decays are obtained via normalization to the dominant decay modes, a precise determination of the BFs of the dominant decay modes of the η and η' is essential

- Reconstruct the inclusive photon spectrum from radiative J/ψ decays
- The radiative photon converts to $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$
- Excellent momentum resolution for electrons @MDC

 $B(J/\psi \to \gamma \eta) = (1.067 \pm 0.005_{\text{stat}} \pm 0.023_{\text{syst}}) \times 10^{-3}$

$$J/\psi \to \gamma \eta) = (1.108 \pm 0.027) \times 10^{-3}$$

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

B

As the BFs of the rare decays are obtained via normalization to the dominant decay modes, a precise determination of the BFs of the dominant decay modes of the η and η' is essential

- Reconstruct the inclusive photon spectrum from radiative J/ψ decays
- The radiative photon converts to $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$
- Excellent momentum resolution for electrons @MDC

 $B(J/\psi \to \gamma \eta) = (1.067 \pm 0.005_{\text{stat}} \pm 0.023_{\text{syst}}) \times 10^{-3}$

In agreement within 20 with the world avarage value with improved precision

$$(J/\psi \to \gamma \eta) = (1.108 \pm 0.027) \times 10^{-3}$$

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$\eta' \rightarrow PRL122, 142002 (2019)$

Pull Events / (10 MeV/ <i>c</i> ²)		$= e^+e^- → γγ$ $= J/ψ → e^+e^-η$ = J/ψ → ωη $= J/ψ → π^+π^-π^0$ $= All Background = \frac{1}{1+1} + \frac{1}{1$	$ \begin{array}{c} $	e ⁺ e ⁻ γη' ωπ ⁰ Backgrounds ⁺ ⁺ ⁺ ⁺ ⁺ ⁺ ⁺ ⁺ ⁺ ⁺
			$\mathcal{B}(\eta \to X)(\%)$	
X	This	work	CLEO	PDG
ŶŶ	39.86 ± 0	0.04 ± 0.99	$38.45 \pm 0.40 \pm 0.36$	39.41 ± 0.20
$\pi^0 \pi^0 \pi^0$	31.96 ± 0	0.07 ± 0.84	$34.03 \pm 0.56 \pm 0.49$	32.68 ± 0.23
$\pi^{+}\pi^{-}\pi^{0}$	23.04 ± 0	0.03 ± 0.54	$22.60 \pm 0.35 \pm 0.29$	22.92 ± 0.28
$\pi^{-}\pi^{-}\gamma$	4.38 ± 0	0.02 ± 0.10	$3.96 \pm 0.14 \pm 0.14$	4.22 ± 0.08

×10³

B

10B of J/ψ! Light Meson Factory

- Improve the knowledge on low energy QCD
- Test Chiral Perturbation Theory predictions
- Study Form Factors
- Test fundamental symmetries
- Search for charge conjugation violation
- Search for new physics BSM

HIGH STATISTICS HIGH PRECISION

$\eta' \to \pi^+\pi^-e^+e^-$	BR - CP violation asymmetries	PRD103, 092005 (2021)
$\eta' \to \pi^+ \pi^- \mu^+ \mu^-$	BR - Decay dynamics	PRD103, 072006 (2021)
Absolute BR of η decays	BRs	PRD104, 092004 (2021)
$\eta' \to \pi^0 \pi^0 \eta$	Cusp effect	PRL130, 081901 (2023)

$$J/\psi \to \gamma \,\eta/\eta' \Longrightarrow 1 \times 10^7 \eta \,/\, 5.2 \times 10^7 \eta'$$

$$J/\psi \to \phi \, \eta/\eta' \Longrightarrow 4 \times 10^6 \eta \,/\, 2.5 \times 10^6 \eta'$$

TO MOVE

PRECISE ERA

INTO A

MORE IS EXPECTED

•••

- Dalitz plots
- Rare and forbidden decays
- Form factors

• ••

MORE IS EXPECTED

•••

- Dalitz plots
- Rare and forbidden decays
- Form factors

• ••

TO MOVE INTO A

PRECISE ERA

Shuangshi Fang (for the BESIII Collaboration) Institute of High Energy Physics, Beijing

γ conversion: n/n' inclusive decays

- A novel way to measure the absolute BFs of η/η' decays
- Excellent momentum resolution for electrons @MDC

First Measurement of Absolute BFs of n' /n decays

B(J/ $\psi \rightarrow \gamma \eta'$) = (5.27±0.03±0.05)×10⁻³

B(J/ψ→γη) = (1.067±0.005±0.023)×10⁻³ ²⁰

Absolute BFs of n decays

PRD104, 092004 (2021)

Shuangshi Fang (for the BESIII Collaboration) Institute of High Energy Physics, Beijing

B(J/ $\psi \rightarrow \gamma \eta$) = (1.067±0.005±0.023)×10⁻³

$$\mathcal{A}_{\varphi} = \frac{N(\sin 2\varphi > 0) - N(\sin 2\varphi < 0)}{N(\sin 2\varphi > 0) + N(\sin 2\varphi < 0)} = (2.9 \pm 3.7_{\text{stat}} \pm 1.1_{\text{syst}})\%$$

Dao-Neng Gao, Mod.Phys.Lett.A17 (2002) 1583]

Shuangshi Fang (for the BESIII Collaboration) Institute of High Energy Physics, Beijing

$\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

- $\eta' \rightarrow \pi^+\pi^- |+|^-$ has similar structure of $\eta' \rightarrow \pi^+\pi^-\gamma$, replacing the γ with an off-shell one that decays into a lepton pair
 - Box anomaly
 - Form factor \rightarrow (g-2)_µ
 - Test the CP symmetry

<mark>η'→I⁺I⁻I⁺I</mark>⁻

Chinese Physics C42 (2018) 023109

13

Thimo Petri, arXiv: 1010.2378

- Test the theoretical models
- -Form factors \rightarrow (g-2)_µ
- -No experimental evidence yet!