

Measurement of Charmonium Decays from $\mathbf{B} \in \mathbf{S} \mathbf{I}$

Charmonium Spectrum

Discovered in 1974, opened a new window in understanding the nature of the hadrons

Potential models describe well the spectrum below open charm threshold

Crucial to keep exploring the charmonium decays with high precision:

- Non-vector states are still less known

- Above the DD* threshold, new states have been observed that were not predicted

BEPCII @ IHEP (Beijing)

e⁺e⁻ central collider CM energy: 2. - 4.95 GeV L_{peak}(@3770): 10³³ cm⁻²s⁻¹

Collider

LINAC

Tiananmen square (天安门广场)~13 km Genova~8165 km

BESIII @ **BEPCII**

Datasets

BESIII datasets guarantee rich physics program

Today we focus on these datasets:

- 2.7B ψ(2S)
- 2.9/fb ψ(3770)

Simple and clear transitions to access non-vector charmonia from $\psi(2S)$:

- $\psi(2S) \rightarrow \gamma \chi_{_{CJ}}$
- $\psi(2S) \rightarrow \gamma \eta_c(2S)$
- $\psi(2S) \rightarrow \pi^0 h_c$

Mezzadri – Charmonium decays from BESIII - 2023/06/06

Today's results

- Observation of $\psi(3770) \rightarrow \eta J/\psi$ PRD 107, L091101 (2023)
- Evidence of $\eta_c(2S) \rightarrow \pi^+\pi^-\eta$ PRD107, 052007 (2023)
- Observation of $\chi_{c1} \rightarrow \Omega^{-} \overline{\Omega}^{+}$ PRD 107, 092004 (2023)
- Helicity amplitude of $\chi_{cJ} \rightarrow \Phi \Phi$ arXiv: 2301.12922

$\psi(3770) \rightarrow \eta J/\psi$

 $\psi(3770)$ is usually considered $1^{3}D_{1}$ state of charmonium spectrum. However, few pieces of experimental evidence has led theoritical models to hypothesize a possible tetraquark contribution. BESIII has also found connections between Y states and $\psi(3770)$, that may strengthen tetraquark hypothesis

- If sizeable tetraquark, BR($\psi(3770) \rightarrow \eta J/\psi$) expected to be enhanced to 15 x 10⁻⁴ level
- One single measurement made by CLEO found evidence of the process with a BR ~ 8.7x10⁻⁴, but neglects any possible interference with continuum
- BR($\psi(3770) \rightarrow \eta J/\psi$) is frequently used in hadronic transition calculation, so a better measurement is needed
- BESIII can use $\psi(3770)$ dataset and recent measurement in the Y states region to observe this process and study the possible interference contribution

ψ(3770) → ηJ/ψ

Unbinned maximum likelihood fit to M'($\gamma\gamma$) distribution in both J/ ψ signal and sideband region

$\psi(3770) \rightarrow \eta J/\psi$

To extract BR fit to the full lineshape using previous BESIII measurements

Two hypotheses:

- Coherent fit
- Incoherent fit

$$\sigma_{\rm co.} = |C \cdot \sqrt{\Phi(s)} + e^{i\phi_1} BW_{\psi(3770)} + e^{i\phi_2} BW_{\psi(4040)} + e^{i\phi_3} BW_{Y(4230)} + e^{i\phi_4} BW_{Y(4390)}|^2,$$

$$\sigma_{\text{inco.}} = |\mathrm{BW}_{\psi(3770)}|^2 + |C \cdot \sqrt{\Phi(s)} + e^{i\phi_2} \mathrm{BW}_{\psi(4040)} + e^{i\phi_3} \mathrm{BW}_{Y(4230)} + e^{i\phi_4} \mathrm{BW}_{Y(4390)}|^2.$$

First observation at 7.6 σ level of this decay

Fit scena	ario	$ \begin{array}{c} \mathcal{B}(\psi(3770) \to \eta J/\psi) \\ (\times 10^{-4}) \end{array} $	$\phi_1(\mathrm{rad})$	Close to totraquark
Coherent fit	Solution1	$11.6 \pm 6.1 \pm 1.0$	$4.0 {\pm} 0.5$	model prediction
	Solution2	$12.0 \pm 6.3 \pm 1.1$	4.3 ± 0.5	model prediction
	Solution3	$11.6\pm6.1\pm1.0$	$3.8{\pm}0.5$	
	Solution4	$11.9\pm6.3\pm1.1$	$4.1{\pm}0.5$	Fine scan needed
Incoherent fit		$7.9\pm1.0\pm0.7$	-	

Compatible with CLEO, better precision

 $\eta_{c}(2S) \rightarrow \pi^{+}\pi^{-}\eta$

Observed by BELLE in B decays, $\eta_c(2S)$ is the first radial excitation of the S-wave spin singlet.

Only 5% of its decays are measured, and the BR of the radiative $\psi(2S) \rightarrow \gamma \eta_c(2S)$ is still poorly known.

Charmonium decays into light hadron can be described by the $c\bar{c}$ annihilation into two or three gluons. Theoretical models predict a fixed ratio for these process for S-wave ground states and radial excitations:

- For the spin triplet, the ratio follow the 12% rules.
- For the spin singlet, different hypothesis on the expected ratio

Phys. Rev. D 44, 1597 (1991)

$$\frac{\operatorname{Br}(\eta_c(2S) \to h)}{\operatorname{Br}(\eta_c \to h)} \approx \frac{\operatorname{Br}(\psi(3686) \to h)}{\operatorname{Br}(J/\psi \to h)} = 0.128,$$

Commun. Theor. Phys. 25, 471 (1996)

$$\frac{{\rm Br}(\eta_c(2S)\to h)}{{\rm Br}(\eta_c\to h)}\approx 1$$

Mezzadri - Charmonium decays from BESIII - 2023/06/06

 $\eta_{c}(2S) \rightarrow \pi^{+}\pi^{-}\eta$

Use 448M psi(2S) dataset to search for the radiative transition and study this final state

 η_c (2S) is described by

$$[E_{\gamma}^{3} \times BW_{0}(m) \times f_{d}(E_{\gamma})] \otimes DGaus(\delta m, \sigma)$$

Dumping factor

$$f_d(E_{\gamma}) = \frac{E_0^2}{E_{\gamma}E_0 + (E_{\gamma} - E_0)^2} \qquad E_0 = \frac{m_{\psi(3686)}^2 - m_{\eta_c(25)}^2}{2m_{\psi(3686)}}$$

 $\eta_{\rm c}(\text{2S}), \, \chi_{_{c1}}, \, \chi_{_{c2}}$ parameter fixed to PDG

First evidence of this decay

Largerly dominated by uncertainty on the $\psi(2S) \rightarrow \gamma \eta_c(2S)$ BR

11

Decays of charmonia into baryon-antibaryon ($B\overline{B}$) are useful for many test of QCD.

 χ_{cJ} decays into $\frac{1}{2}$ BB are described by color octet model, with few important exception ($\chi_{cJ} \rightarrow \Lambda \overline{\Lambda}$ prediction are 1 order of magnitude lower than experimental measurement)

 $\chi_{c1} \rightarrow \Omega^{-} \Omega^{+}$

Never observed a χ_{cJ} decay into 3/2 BB final states.

Using partial reconstruction and full 3B ψ (2S) dataset, BESIII reports the first observation of $\chi_{cJ} \rightarrow \Omega^- \overline{\Omega}^+$ with large significance

$$\begin{aligned} \mathcal{B}(\chi_{c0} \to \Omega^{-} \bar{\Omega}^{+}) &= (3.51 \pm 0.54 \pm 0.29) \times 10^{-5} \\ \mathcal{B}(\chi_{c1} \to \Omega^{-} \bar{\Omega}^{+}) &= (1.49 \pm 0.23 \pm 0.10) \times 10^{-5} \\ \mathcal{B}(\chi_{c2} \to \Omega^{-} \bar{\Omega}^{+}) &= (4.52 \pm 0.24 \pm 0.18) \times 10^{-5} \end{aligned}$$

In future super tau-charm factories, useful also to probe spin polarization of Ω^{-} baryon

12

For a charmonia decaying into two hadron, pQCD predicts $\mathcal{B}[\psi(\lambda) \to h_1(\lambda_1)h_2(\lambda_2)] \sim \left(\frac{\Lambda_{QCD}^2}{m_c^2}\right)^{|\lambda_1|}$

If light quark mass is neglected, $|\lambda 1 + \lambda 2| = 0$ due to quark helicity conservation in strong decay. Any decay that do not respect this, should be suppressed $\chi_{c1} \rightarrow \Phi \Phi$ shall be suppressed wrt to $\chi_{c0,2} \rightarrow \Phi \Phi$

Experiments see close BR for three χ_{cJ} , so non-perturbative corrections are needed. Helicity amplitudes can help disentangle between models

Decay channel	$\chi_{c0} \to \phi \phi$		$\chi_{c2} o \phi \phi$	
Parameter	x	ω_1	ω_2	ω_4
pQCD	0.293 ± 0.030	0.812 ± 0.018	1.647 ± 0.067	0.344 ± 0.020
${}^{3}P_{0}$	0.515 ± 0.029	1.399 ± 0.580	0.971 ± 0.275	0.406 ± 0.017
$D\bar{D}$ loop	0.359 ± 0.019	1.285 ± 0.017	5.110 ± 0.057	0.465 ± 0.002
	$x = F_{11}^0 / F_{00}^0 $	$\omega_1 = \left F_{0,1}^2 / F_{0,0}^2 \right $	$\omega_2 = \left F_{1,-1}^2 / F_{0,0}^2 \right $	$\omega_4 = \left F_{1,1}^2 / F_{0,0}^2 \right $

Mezzadri - Charmonium decays from BESIII - 2023/06/06

BESIII can use 448M psi(2S) to perform helicity amplitude measurement to provide insight on this decay dynamics and test the different models

Helicity amplitude of two body decay

$$A = \langle \vec{p}\lambda_1; -\vec{p}\lambda_2 | \mathcal{M} | JM \rangle$$

= $4\pi \left(\frac{\mu}{p}\right)^{\frac{1}{2}} \langle \phi\theta\lambda_1\lambda_2 | JM\lambda_1\lambda_2 \rangle \langle JM\lambda_1\lambda_2 | \mathcal{M} | JM \rangle$
= $N_J F^J_{\lambda_1,\lambda_2} D^{J*}_{M,\lambda}(\phi,\theta,0), \lambda = \lambda_1 - \lambda_2,$

Decay	Partial waves (LS)
$\psi(3686) o \gamma \chi_{c0}$	(01) , (21)
$\psi(3686) o \gamma \chi_{c1}$	(01) , (21) , (22)
$\psi(3686) o \gamma \chi_{c2}$	(01) , (21) , (22) , (23) , (43)
$\chi_{c0} \text{ or } NR(0^+) \to \phi \phi$	(00) , (22)
$\chi_{c1} \text{ or } NR(1^+) \to \phi \phi$	(01) , (21) , (22)
$\chi_{c2} \text{ or } NR(2^+) \to \phi \phi$	(02) , (20) , (21) , (22) , (42)
$NR(0^-) \rightarrow \phi \phi$	(11)
$\phi \to K^+ K^-$	(10)

NR components (0^+ and 0^-) treated separately to 14 take into account possible interference

 χ_{c0} mass and width floating in the fit, resolution function convoluted with χ_{c1} and χ_{c2} BW functions

Decay Mode	BF(2011 BESIII) [8]	BF(this work)	BF(PDG value) [22]
$Br[\chi_{c0} \to \phi\phi](\times 10^{-4})$	$7.8 {\pm} 0.4 {\pm} 0.8$	$8.48 \pm 0.26 \pm 0.27$	$7.7 {\pm} 0.7$
$Br[\chi_{c1} \to \phi\phi](\times 10^{-4})$	$4.1 {\pm} 0.3 {\pm} 0.5$	$4.36 \pm 0.13 \pm 0.18$	$4.2 {\pm} 0.5$
$\operatorname{Br}[\chi_{c1} \to \phi \phi](\times 10^{-4})$	$10.7 \pm 0.4 \pm 1.2$	$13.36 \pm 0.29 \pm 0.49$	$11.2{\pm}1.0$

Extract helicity amplitude ratio χ_{c0} $|F_{1,1}^0| / |F_{0,0}^0| = 0.299 \pm 0.003 \pm 0.019$ χ_{c2} $|F_{0,1}^2| / |F_{0,0}^2| = 1.265 \pm 0.054 \pm 0.079$ $|F_{1,-1}^2| / |F_{0,0}^2| = 1.450 \pm 0.097 \pm 0.104$ $|F_{1,1}^2| / |F_{0,0}^2| = 0.808 \pm 0.051 \pm 0.009$

 $\chi_{_{CO}}$ results in good agreement with pQCD indicates that the decay follow helicity selection rule

 $\chi_{_{C^2}} deviates$ more from all three proposed models

All will benefit from the newest BESIII 2.7B psi(2S) dataset!

Summary

- Charmonium decays provide insight to our understanding of QCD, expecially non-perturbative contribution
- BESIII profits from large data sample and clear transitions to produce non-vector charmonia
- First observation of ψ(3770) → ηJ/ψ will lead to new comprehension of ψ(3770) nature?
 BESIII is collecting more ~5 times more data with the possibility to access also ψ(3770) → π⁰ J/ψ
- $\eta_c(2S)$ exploration just started, many final states within reach with 2.7B $\psi(2S)$ dataset
 - Better constrain radiative transition are on-progress and deeply needed
- χ_{cJ} decay are a perfect benchmark to address non-perturbative models
 - Decays into hyperons allows also to extract spin polarization from non-vector states

