

Hyperon electromagnetic form factors in VMD model

Ju-Jun Xie

谢聚军

Institute of Modern Physics, Chinese Academy of Science

2023-6-8@Hadron2023, Genova, Italy

Outline

Introduction: electromagnetic form factors

The model: Vector Meson Dominance

Hyperon electromagnetic form factors

Summary

2

Electromagnetic form factors (space-like)

S. Pacetti, R. Baldini Ferroli and E. Tomasi-Gustafsson, ``Proton electromagnetic form factors: Basic notions, present achievements and future perspectives," **Phys. Rept. 550-551, 1-103 (2015).**

Electromagnetic form factors (time-like)

Experimental measurements (time-like)

See more details @ Plenary talk on June 6, By Xiao-Rong Zhou

Initial State Radiation

See also the talk on June 7:

Both techniques can be used at BESIII.

Recent results of baryon electromagnetic form factors at BESIII

Weiping Wang (On behalf of the BESIII Collaboration)

VMD: vector meson dominance model

Λ EMFFs in final state interactions

J. Haidenbauer and U. G. Meißner, Phys. Lett. B 761, 456-461(2016).

Λ EMFFs in VMD

Λ EMFFs in VMD (New proposal)

Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022). Figure: Cross section of the reaction $e^+e^- \rightarrow \overline{\Lambda}\Lambda$.

The red solid curve represents the total contributions from ω , ϕ and X(2231), while the blue dashed curve stands for the results without the contribution from the new X(2231) state. The green-dash-dotted curve stands for the fitted results with the effective form factor as in

$$G_{\text{eff}} = C_0 g(q^2) = \frac{C_0}{(1 - \gamma q^2)^2}$$

Table: Values of model parameters determined in this work.

Parameter	Value	Parameter	Value	
$ \begin{array}{c} \gamma \left(\text{GeV}^{-2} \right) \\ \beta_{\phi} \\ \beta_{x} \\ \Gamma_{x} (\text{MeV}) \end{array} $	$0.43 \\ 1.35 \\ 0.0015 \\ 4.7$	$\begin{array}{c} \beta_{\omega} \\ \alpha_{\phi} \\ m_x \text{ (MeV)} \end{array}$	-1.13 -0.40 2230.9	New state X(2231) ?

Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022).

Flatte function

Figure: Fitting result of $|G_{eff}|$ with Flatte.

Parameter Parameter Value Value γ (GeV⁻²) 0.57 ± 0.21 -0.3 ± 0.31 βwø β_x -0.03 ± 0.09 m_x (MeV) 2237.7 ± 50.2 8.8+75.9 3.0 ± 1.9 Γ_0 (MeV) $g_{\Lambda\bar{\Lambda}}$

S.M. Flatte, Phys. Lett. B 63, 224-227 (1976).

On the other hand, if one takes a Flatté form for the total decay width of $\omega(1420)$, $\omega(1650)$, $\phi(1680)$, and $\phi(2170)$, the experimental data can also be well reproduced with a strong coupling of these resonances to the $A\bar{A}$ channel.

$$\Gamma_{x} = \Gamma_{0} + \Gamma_{\Lambda\bar{\Lambda}} (s) \qquad \Gamma_{\Lambda\bar{\Lambda}} = \frac{g^{2}}{4\pi} \sqrt{\frac{s}{4} - M_{\Lambda}^{2}}$$

Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022).

M. Ablikim, et al., Phys. Rev. D 100, 032009(2019).

 Σ EMFFs

BESIII, Phys. Lett. B 814, 136110 (2021); Phys. Lett. B 831, 137187 (2022).

The ratio $\Sigma^+ \overline{\Sigma}^-$: $\Sigma^0 \overline{\Sigma}^0$: $\Sigma^- \overline{\Sigma}^+$ is about 9.7 ± 1.3 : 3.3 ± 0.7 : 1.

Σ^+, Σ^- , and Σ^0 EMFFs (VMD)

$$\begin{split} |\Sigma^{+}\bar{\Sigma}^{-}\rangle &= \frac{1}{\sqrt{2}} |1,0\rangle + \frac{1}{\sqrt{3}} |0,0\rangle + \frac{1}{\sqrt{6}} |2,0\rangle \\ |\Sigma^{-}\bar{\Sigma}^{+}\rangle &= -\frac{1}{\sqrt{2}} |1,0\rangle + \frac{1}{\sqrt{3}} |0,0\rangle + \frac{1}{\sqrt{6}} |2,0\rangle \\ |\Sigma^{0}\bar{\Sigma}^{0}\rangle &= -\frac{1}{\sqrt{3}} |0,0\rangle + \sqrt{\frac{2}{3}} |2,0\rangle \\ F_{1}^{\Sigma^{+}} &= g(q^{2})(f_{1}^{\Sigma^{+}} + \frac{\beta_{\rho}}{\sqrt{2}} B_{\rho} - \frac{\beta_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{+}} &= g(q^{2})(f_{2}^{\Sigma^{+}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{1}^{\Sigma^{-}} &= g(q^{2})(f_{1}^{\Sigma^{-}} - \frac{\beta_{\rho}}{\sqrt{2}} B_{\rho} - \frac{\beta_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{1}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{1}^{\Sigma^{0}} &= g(q^{2})(\frac{\beta_{\omega\phi}}{\sqrt{3}} - \frac{\beta_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{0}} &= g(q^{2})(\frac{\beta_{\omega\phi}}{\sqrt{3}} - \frac{\beta_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{0}} &= g(q^{2})\mu_{\Sigma^{0}} B_{\omega\phi}, \end{split}$$

Σ^+, Σ^- , and Σ^0 EMFFs (VMD)

Bing Yan, Cheng Chen, and J. J. Xie, Phys. Rev. D107, 076008 (2023).

Dipole behavior of baryon effective form factors

$$G_D(q^2) = \frac{c_0}{(1 - \gamma q^2)^2}$$

а

n – Fit

Oscillation of baryon effective form factors

New parametrization

$$G_{osc} = A \cdot \frac{c_0}{(1 - \gamma \cdot s)^2} \cdot \cos\left(C \cdot \sqrt{s} + D\right) \qquad G_D(q^2) = \frac{c_0}{(1 - \gamma q^2)^2}$$
$$G_{eff}(s) = G_D(s) + G_{osc}(s)$$
$$= \frac{c_0}{(1 - \gamma s)^2} \left(1 + A\cos(C\sqrt{s} + D)\right)$$

$$data = G_{eff} = G_D + G_{osc}$$

$$\rightarrow \quad G_{osc} = data - G_D$$

Numerical results

A.X. Dai, Z.Y. Li, L. Chang and J.J. Xie, Chin. Phys. C 46, 073104 (2022).

Summary

1. Threshold enhancement

Thank you very much for your attention!

e-Print: 2206.01494 [nucl-th]

New insights into the oscillation of the nucleon electromagnetic form factors

Qin-He Yang^{1,2}, Ling-Yun Dai^{1,2} Di Guo^{1,2}, Johann Haidenbauer³, Xian-Wei Kang^{4,5}, and Ulf-G. Meißner^{6,3,7}

PHYSICAL REVIEW D 105, L071503 (2022)

Letter

Timelike nucleon electromagnetic form factors: All about interference of isospin amplitudes

Xu Cao^(b),^{1,2,*} Jian-Ping Dai^(b),^{3,†} and Horst Lenske^{4,‡}

PHYSICAL REVIEW D 107, L091502 (2023)

Letter

Toy model to understand the oscillatory behavior in timelike nucleon form factors

Ri-Qing Qian,^{1,2,3,4,*} Zhan-Wei Liu^(b),^{1,2,3,4,†} Xu Cao^(b),^{2,3,5,6,‡} and Xiang Liu^(b),^{1,2,3,4,§}

PHYSICAL REVIEW LETTERS 128, 052002 (2022)

New Insights into the Nucleon's Electromagnetic Structure

Yong-Hui Lin^(b),¹ Hans-Werner Hammer^(b),^{2,3} and Ulf-G. Meißner^(b),^{1,4,5}