Measurement of the $e^+e^- \rightarrow B_s \bar{B}_s X$ cross section in the energy range from 10.63 to 11.02 GeV at Belle

The 20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) Genova, Italy, 5 - 9 June 2023

Valentina Zhukova

on behalf of the Belle collaboration

Jožef Stefan Institute Ljubljana, Slovenia

Introduction

Unexpected properties of the bottomonium above BB

- \rightarrow Z_b and Z'_b are charged (at least 4 quarks)
- Rates of hadronic transition to lower bottomonia are higher then expected for pure *bb* (violate OZI)
- η transitions are not suppressed relative to dipion transitions (violate HQSS)

Combined theoretical analysis of all available data

N. HÜSKEN, R. E. MITCHELL, and E. S. SWANSON

PRD 106 (2022) 9, 094013

To extract the properties of resonances lying in this energy region

11.2 11.2

11.2

Introduction

 $B_s^{(*)}\bar{B}_s^{(*)}$ channel — the current data doesn't constrain the fit function well

Need to improve the accuracy in $B_s^{(*)}\overline{B}_s^{(*)}$ channel

alpion transitions (violate HQ55)

Combined theoretical analysis of all available data

Reconstruct inclusive D_s and D^0 at each energy scan point, $x_p = \frac{p}{m}$ is used to separate continuum and $b\bar{b}$ - events; p_{max} $\sigma(D_{S}X)$ and $\sigma(D^{0}X)$ Measured cross sections can be expressed as: $(60.2 \pm 6.2)\%$ $\sigma(D_{c}X)/2 = \mathscr{B}(B_{c} \to D_{c}X) \cdot \sigma(B_{c}\bar{B}_{c}X) + \mathscr{B}(B \to D_{c}X) \cdot \sigma(B\bar{B}X)$

model: $(8 \pm 7)\%$

Solving eq's system: $\sigma(B_{c}B_{c}X)$ and $\sigma(B\overline{B}X)$

 $\mathscr{B}(B_s \to D_s X)$ has large uncertainty $\mathscr{B}(B_{c} \to D^{0}X)$ is not measured, only prediction

Method

 $\sigma(e^+e^- \to B_s\bar{B}_sX) = \sigma(e^+e^- \to B_s^{(*)}\bar{B}_s^{(*)})$ up to $B_{c}\bar{B}_{c}\pi^{0}\pi^{0}$ threshold (11.004 GeV)

No B_s at energy point near $\Upsilon(4S)$:

At energy point near $\Upsilon(5S)$:

$$\begin{split} \sigma(D_s X) \mid_{\Upsilon(5S)} &/2 = \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) \mid_{\Upsilon(5S)} + \mathscr{B}(B \to D_s X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)} \\ \sigma(D^0 X) \mid_{\Upsilon(5S)} &/2 = \mathscr{B}(B_s \to D^0 X) \cdot \sigma(B_s \bar{B}_s X) \mid_{\Upsilon(5S)} + \mathscr{B}(B \to D^0 X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)} \\ C &= \frac{\mathscr{B}(B_s \to D^0 X)}{\mathscr{B}(B_s \to D_s X)} = \frac{\sigma(D^0 X) \mid_{\Upsilon(5S)} - \mathscr{B}(B \to D^0 X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)}}{\sigma(D_s^{\pm} X) \mid_{\Upsilon(5S)} - \mathscr{B}(B \to D_s X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)}} \\ \\ \hline \text{We can measure using } \Upsilon(5S) \text{ data} & \text{We can measure using } \Upsilon(4S) \text{ data} & \text{from JHEP 06 (2021) 137} \end{split}$$

At scan points:

$$\sigma(D_s X)/2 = \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) + \mathscr{B}(B \to D_s X) \cdot \sigma(B\bar{B}X)$$

$$\sigma(D^0 X)/2 = C \cdot \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) + \mathscr{B}(B \to D^0 X) \cdot \sigma(B\bar{B}X)$$

Solving eq's system:

Method

Measure with high accuracy $\mathscr{B}(B \to D_s X)$, $\mathscr{B}(B \to D^0 X)$

energy dependence of the $\sigma(B_s \overline{B}_s X) \cdot \mathscr{B}(B_s \to D_s X)$ and $\sigma(B\overline{B}X)$

Data samples for the analysis

 $D_{(s)}$

 $ar{B}^{(*)}_{(s)}$

Data used in this analysis: data at $\Upsilon(4S)$ energy: $\mathscr{L}_{4S} = 571 \text{ fb}^{-1}$ data at $\Upsilon(5S)$ energy: $\mathscr{L}_{5S} = 121 \text{ fb}^{-1}$ data at $E_{cm} = 10.52 \text{ GeV}$ (continuum data sample): $\mathscr{L}_{cont} = 74 \text{ fb}^{-1}$ 22 energy scan points $(E_{cm} \text{ from 10.63 GeV to 11.02 GeV}):$ $\mathscr{L}_i \approx 1 \text{ fb}^{-1}$

 $B^{(*)}_{(s)}$

to obtain pure $b\bar{b}$ spectra

Continuum spectrum correction

Due to the evolution of fragmentation with energy the shape of the continuum spectrum changes noticeably between $E_{cm} = 10.52$ GeV and the $\Upsilon(5S)$ energy

The continuum x_p spectra should be corrected

MC generators: KKMC — initial state radiation, Pythia 8.2 — c-quark fragmentation

Continuum normalisation

Red points — on-resonance data

We fit the large x_p part of the on-resonance spectra to find the continuum contribution in the $b\bar{b}$ region

Fitting function — shape of the x_p spectra of the data at $E_{cm} = 10.52 \text{ GeV}$

Blue hatched histograms — fit results Open dashed histograms — extrapolation of the continuum component

We obtain the scaling factors for continuum spectrum normalisation

Points in the high x_p region are consistent with zero, it means that continuum spectra shapes are correct

Apply efficiency correction to calculate $e^+e^- \rightarrow b\bar{b} \rightarrow DX$ cross sections

10

$\Upsilon(4S)$ data:

$$\mathscr{B}(B \to D_s X) = \frac{\sigma(D_s X)|_{\Upsilon(4S)}}{2 \cdot \sigma(e^+ e^- \to b\bar{b})|_{\Upsilon(4S)}} = (11.28 \pm 10^{-10})$$

$$\mathscr{B}(B \to D^0 X) = \frac{\sigma(D^0 X)|_{\Upsilon(4S)}}{2 \cdot \sigma(e^+ e^- \to b\bar{b})|_{\Upsilon(4S)}} = (66.63 \pm 2 \cdot \sigma(e^+ e^- \to b\bar{b}))|_{\Upsilon(4S)}$$

$$\Upsilon(5S)$$
 data:

Results at $\Upsilon(4S)$ and $\Upsilon(5S)$

PDG full recon

 $0.03 \pm 0.43)\%$

$$(10.4^{+1.3}_{-1.8})\%$$

 $(8.3 \pm 0.8)\%$

 $0.04 \pm 1.77)\%$

$$(71.6 \pm 4.6)\%$$

 $(61.6 \pm 2.9)\%$

11

Results at $\Upsilon(4S)$ and $\Upsilon(5S)$

Fractions of $B_{s}\bar{B}_{s}X$ events produced at $\Upsilon(5S)$:

$$f_{\rm s} = \frac{\sigma(e^+e^- \to B_s \bar{B}_s X)|_{\Upsilon(5S)}}{\sigma(e^+e^- \to b\bar{(}b))|_{\Upsilon(5S)}} = (23$$

To improve accuracy we fit

 $f_{\rm s} = (23.0 \pm 0.2 \pm 2.8) \%$ $f_{B\bar{B}X} = (75.1 \pm 4.0)\%$ JHEP 06 (2021) 137 $f_{\varkappa}^{\text{known}} = (4.9 \pm 0.6)\%$ JHEP 06 (2021) 137

with one constraint

$$f_s + f_{B\bar{B}X} + f_{B} = 1$$

from the fit: $f_s = (22.0^{+2.0}_{-2.1})\%$

Result from the fit:

Source	Systematic uncertainty (?		
$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) _{\Upsilon(5S)}$	1.4		
$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) _{\Upsilon(4S)}$	0.7		
$\sigma(e^+e^- \to B\bar{B}X) _{\Upsilon(5S)}$	1.4		
$\mathcal{B}(B^0_s \to D^\pm_s X)$	10.5		
$\sigma(e^+e^- ightarrow b\bar{b}) _{\Upsilon(5S)}$	4.5		
Correlated contributions			
$-\operatorname{tracking}$	1.1		
$-K/\pi$ identification	2.3		
$-r_{\phi}$	0.6		
$- {\cal B}(D^+_s o K^+ K^- \pi^+)$	1.9		
Total	12.0		

Belle

PRD 105 (2022) 1,012004

 $\underline{\mathscr{B}(B_{s} \to D_{s}X) = (60.2 \pm 5.8 \pm 2.3)\,\%}$

 $\begin{cases} \sigma(B_s \bar{B}_s X) \cdot \mathscr{B}(B_s \to D_s X) = 0.54 \cdot \sigma(D_s X) - 0.09 \cdot \sigma(D^0 X) \\ \sigma(B\bar{B}X) = -0.34 \cdot \sigma(D_s X) + 0.81 \cdot \sigma(D^0 X) \end{cases}$

$\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D_c X)$ and $\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D^0 X)$

+ results at $\Upsilon(4S)$ and at $\Upsilon(5S)$:

 $\mathscr{B}(B \to D_s X) = (11.28 \pm 0.03 \pm 0.43)\%$

 $\mathscr{B}(B \to D^0 X) = (66.63 \pm 0.04 \pm 1.77)\%$

 $C = \frac{\mathscr{B}(B_s \to D^0 X)}{\mathscr{B}(B_s \to D_s X)} = 0.416 \pm 0.018 \pm 0.092$

Results for $\sigma(e^+e^- \rightarrow B_s\bar{B}_sX)$ and $\sigma(e^+e^- \rightarrow B\bar{B}X)$

\checkmark Cross sections $\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D_s^{\pm}X)$ and $\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D^0\bar{D}^0X)$ as well as $\sigma(e^+e^- \to B_c \bar{B}_c X)$ and $\sigma(e^+e^- \to B\bar{B}X)$ are measured from 10.63 to 11.02 GeV ✓ Inclusive $\mathscr{B}(B \to D^0 X)$ and $\mathscr{B}(B \to D_{c} X)$ are obtained \checkmark Ratio $\mathscr{B}(B_s \to D^0 X)/\mathscr{B}(B_s \to D_s X) = 0.416 \pm 0.018 \pm 0.092$ is determined \checkmark The fraction of B_s mesons at $\Upsilon(5S)$ is measured to be $f_s = (22.0^{+2.0}_{-2.1})\%$

Summary

Thank you very much for your attention!

Backup

$$M_{inv}(K^-K^+) - m_{\phi} | < 19 \text{ MeV/c}^2, |\cos \theta_{hel}| > 0$$

x_p spectra of D_S in bb MC at $\Upsilon(5S)$

Continuum spectrum subtraction for D^0 **at** $\Upsilon(5S)$

Хр

x_p spectra of D_S in bb MC at $\Upsilon(4S)$

Yield N_{D_s} from charged and mixed MC

x_p spectra of D^0 in bb MC at $\Upsilon(4S)$

Systematic uncertainties in $\sigma(e^+e^- \rightarrow DX)$					
Source	Ds at Y(5S)	D ⁰ at Y(5S)	Ds at Y(4S)	D ⁰ at Y(4S)	
Fit model	0.6	0.3	1.0	1.1	
Continuum xp spectrum statistical error	0.6	0.4	0.4	0.1	
Continuum xp spectrum correction	0.3	1.3	_	_	
MC statistical error	0.2	0.1	0.1	0.0	
rф	0.6	_	0.6	_	
Tracking	1.1	0.7	1.1	0.7	
K/ π identification	2.3	1.4	2.3	1.4	
Luminosity	1.4	1.4	1.4	1.4	
Branching fraction	1.9	0.8	1.9	0.8	
Total	3.6	2.6	3.7 23	2.3	

Continuum xp spectrum statistical error:

$$\frac{1}{\sigma} \sqrt{\sum_{i=1}^{i_{\max}} \left(\sigma_i \frac{\Delta n_i k}{N_i - k n_i} \right)^2}$$

MC statistical error:

$$\frac{1}{\sigma} \sqrt{\sum_{i=1}^{i_{\max}} \left(\sigma_i \frac{\Delta \mathscr{E}_i}{\mathscr{E}_i} \right)^2}$$

Absolute systematic uncertainties

