

Assessing the Spectral Shape of Forbidden Beta Decays

Lorenzo Pagnanini (GSSI & INFN & Queen's University)

Forbidden beta decays

Transition	ΔL	ΔJ	Δπ	log ₁₀ ft
Fermi "super-allowed"	0	0	0	3-4
Gamow- Teller "allowed"	0	0,1	0	3 - 10
Forbidden	n	n, n+1	0/1	5 -10 (1 st) 22-24 (4 th)

 $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}$ $log_{10}ft = log_{10}(f(Z, E_0) \cdot T_{1/2})$

As a rule of thumb, each degree of forbidenness gives 5-6 orders of magnitude in ~T1/2 See <u>B. Singh et al., Nucl. Data Sheets 84 (1998) 487</u>.

2

* defined by only one nuclear matrix element

Spectral shape...the standard approach $\rho_{all}(E) \propto F(Z_d, E) \cdot (Q_\beta - E)^2$ $\rho(E) = \rho_{all}(E) \cdot C(W)$ numerically calculated C(W) empirical correction function Being W the total energy of the election, while P and Q the momenta of the electron and the anti-

neutrino, respectively

Forbidden Non-unique

$$+ a_2 W + a_3 W^2 + a^4 W^3$$

Forbidden Unique

st
$$C_2 = P^2 + c_1 Q^2$$

$$C_2 = P^4 + c_1 Q^2 P^2 + c_2 Q^4$$

Spectral shape...a recent approach $\rho_{all}(E) \propto F(Z_d, E) \cdot (Q_\beta - E)^2$ $\rho(E) = \rho_{all}(E) \cdot C(W)$

C(W) empirical correction function

The "shape factor" encodes the nuclear-structure information and can be decomposed into vector, axial-vector, and vector-axial-vector parts

4

numerically calculated

$$C(W) = g_A^2 \left[C_A(W) + \left(\frac{g_V}{g_A}\right)^2 + C_V(W) + \frac{g_V}{g_A}C_{VA}(W) \right]$$

Fit the **template spectra** to the **experimental dar**
allow us to investigate the g_A values in different
decay (aiming at discovering the physics under the
phenomenological **g_A-quenching**)
Last development on this line:
adding the s-NME as free parameter in the fit

Spectral shape...the most recent approach

From a continuum smooth spectrum (experimental or theoretical) $S(w_{\rho})$, we can obtain the momenta of the distribution (N = 6 is enough)

S-NME

ພ -1.0

-2.0

-1.50

-1.80

$$\mu_{0} = \int_{w_{\text{thr}}}^{w_{0}} S(w_{e}) dw_{e}$$

Decay rate
$$\mu_{n} = \frac{\int_{w_{\text{thr}}}^{w_{0}} S(w_{e}) w_{e}^{n} dw_{e}}{\int_{w_{\text{thr}}}^{w_{0}} S(w_{e}) dw_{e}} (n \ge 1)$$

Basically the same approach as before but simpler implementation: one has to reproduce 6 experimental values with 6 theoretical predictions and 2 free parameter (r and s)

Phys.Rev.C 107 (2023) 5, 055502

Where we found them?

Dark Matter & Rare event searches

Neutrino physics at reactor

Medical diagnostics

Motivations - Why so much interest?

1. Background or source of uncertainty in rare event search

- Background source in dark matter search => 40K, 42Ar, 39Ar
- Ingredients in NLDBD background modeling => 90Sr/90Y, 210Bi
- Background in Neutrino experiment => ²¹⁰Bi 0

2. Low Q-value decay

- Cosmic Neutrino Background detection => ¹⁵¹Sm, ¹⁷¹Tm
- Neutrino mass $=> 115 ln^*$

3. Gym for Nuclear Models

1. Opportunity to solve the long standing g_A quenching 2. Opportunity to improve Nuclear Model for NME calculations => NLDBD

Motivations

The international effort to observe neutrinoless double beta decay is increasing and new experiments are growing

See yesterday talks by Claudia Tomei, and Stefano Dell'Oro

Neutrinoless double beta decay

...atomic level

 g_A^4 $(\mathscr{G}^{0\nu}(Q_{\beta\beta},Z))\cdot$ $T_{1/2}^{0\nu}$

9

Neutrinoless double beta decay

...atomic level

Half-life from experiments g_A^4 $T_{1/2}^{0\nu}$ $(Q_{\beta\beta}, Z)$

> **Phase Space Factor** precisely evaluated

Effective Majorana Mass , New physics $m_{\beta\beta}$ parameter

 m_e

Nuclear Matrix Elements from NuclearModels 10 (large uncertainty)

 $\mathcal{M}^{0\nu}(A,Z)$

Neutrinoless double beta decay

...atomic level

$$\left(T_{1/2}^{0\nu} \right)^{-1} = g_A^4 \cdot \mathcal{G}^{0\nu} (Q_\beta)$$

Nuclear Matrix Elements (NMEs) are fundamental for two reasons:

- can identify a set of golden-candidates, e.g. $G_{0v} \propto Q^5$)

1. If we observe 0vββ, we will need precise value of NME to convert the half-life to Majorana mass. 2. A further isotope down-selection is prevented by NME uncertainties (only knowing the NMEs we

Forbidden Beta Decays of Natural Isotopes

Cadmium-113

"Golden candidate" due to experimental conditions:

- Good natural abundance i.a. = 12.22%
- Embedded in CdWO₄ crystal
 - excellent scintillator for NLDB (by DAMA group)
 - excellent bolometer for DM (by CRESST)
- Embedded in semiconductors (CdTe, CdZnTe)
 interesting for NLDB (by COBRA)
- Good intrinsic radiopurity

Phys.	Lett.	В
-------	-------	---

Detector material	E _{th} / keV	isotop. exp. / kg d	FWHM / keV	S/B ratio	$T_{1/2} / 10^{15} \text{ yrs}$	Ref., year
CdWO ₄ , 454 g	44	0.31	${\sim}49$	${\sim}50$	7.7 ± 0.3	[48], 1996
CdZnTe, 3×5.9 g	100	0.05	$\sim \! 43$	${\sim}8$	$8.2^{+0.3}_{-1.0}$	[49], 2005
CdWO ₄ , 434 g	28	1.90	\sim 47	\sim 56	8.04 ± 0.05	[41], 2007
CdZnTe, 11×6.5 g	110	0.38	${\sim}20$	~ 9	8.00 ± 0.26	[<mark>50</mark>], 2009
CdZnTe, 45×6.0 g	84	2.89	$\sim \! 18$	${\sim}47$	_	present work
CdZnTe, 45×6.0 g	84	2.89	~18	~ 47	_	present worl

800 (2020) 135092

Cd-113 by DAMA

- CdWO4 scintillating crystal
- Half-life = $(8.04 \pm 0.05)x10^{14}$ yr
- Detailed comparison with theory

Cd-113 by COBRA

 \circ Spectral shape reproduced by theory, varying g_A

BUT

• no Q-value measurement • no Half-life measurement

Cd-113 (COBRA reanalysis)

A novel approach to simultaneously reproduce the spectral shape and the half-life introducing as free parameter the s-NME (small Nuclear Matrix Element).

Phys. Lett. B 822 (2021) 136652

Cd-113 with Silicon Drift Detectors

Journal of Physics: Conference Series 2453 (2023) 012020

- Source \neq detector
- On the surface of an SDD acting as veto
- Electrons detected by a second SDD
- Active veto for backscattered electrons

Vanadium-50

Opposite situation wrt Cd113:

- Low natural abundance i.a. =0.250%
- Observed only the EC branch

Q-value Half-life		Classification		
1038 keV	>1.9x10 ¹⁹ yr	$6^+ \rightarrow 2^+ \Delta J^{\Delta \pi} =$		

Indium-115

Good experimental situation:

- High natural abundance i.a. = 95.71%
- Embedded in crystal as InI, InO, LiInSe₂ Ο
- Good radiopurity levels Ο

Spectrum shape was measured only in one work: L. Pfeiffer et al., PRC 19 (1979) 1035

- Disagreement with previous results 0 G.B. Beard et al., PR 122 (1961) 1576 $T_{1/2} = (6.9 \pm 1.5) \times 10^{14} \text{ yr}$
- Energy threshold ~50 keV

New low-background measurements are needed!

Q-value	Half-life	Classification		
496 keV	4.41x10 ¹⁴ yr	$\frac{9^+}{2} \to \frac{1^+}{2} \Delta J^{\Delta \pi} = 4$		

- LilnSe₂ measured as cryogenic calorimeter
- Excellent performance but high rate at low energy

Detector parameter	LiInSe ₂ crystal		
Crystal dimensions	$1.3 \times 1.6 \times 0.7$ cm	Model	g_A
Total crystal mass	10.3 grams	ISM	0.830
Effective ¹¹⁵ In mass	4.1 grams	IBM	0.845
Noise level	1.1 keV (1σ)	MOPM	0.936
Avg. energy resolution	2.4 keV (1σ)	Pfeiffer	01750
100% Trigger threshold	20.0 keV	et al [42]	
Analysis threshold	160 keV	Watt and	
Containment efficiency	96.6% @ 497 keV	Glover [70]	
Data selection cut efficiency	47.6(2)% (160-500 keV)	Beard and	
Livetime fraction	52.54(8)%	Kelly [71]	
Total exposure	39.7 g days		

20

In-115 by ACCESS

- Indium Iodine (InI) crystal measured as cryogenic calorimeter
- Excellent performance
 - Threshold ~7 keV
 - 3.1 keV FWHM at 60 keV
 - Half-life = 4.77×10^{14} yr

https://sites.google.com/gssi.it/access

Eur.Phys.J.Plus 138 (2023) 5, 445

Artificial Isotopes

MetroBeta project => ⁹⁹Tc, ¹⁵¹Sm (and others) electrodeposited on silver foils or dropped on gold foils than used as an **absorber coupled to a MMC** (Metallic Magnetic Calorimeter)

App. Rad. Iso. 153 (2019) 108830 App. Rad. Iso.185 (2022) 110237

BetaShape code => used to reproduce the spectra

http://www.lnhb.fr/rd-activities/spectrum-processing-software/

Spectral shape of 2vßß decay

Neutrinoless double beta decay experiments

Goals:

- $2\nu\beta\beta$ modeling in Nuclear Theory $\frac{d\Gamma_0}{d\rho} \propto (Q_{\beta\beta} T_1 T_2)^5$ Single State Dominance vs Closure Approximation
 - Improved description
- distortion due to Beyond Standard Model Physics
 - CPT violation
 - v-Self Interactions

ta/Model

V·kg·yr)]

ints/(k

 10^{-}

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

Energy [keV]

0.8

1000

1500

2000

Energy [keV]

23

- Nuclear models and computation techniques have evolved a great deal Ο
- Renewed experimental efforts ongoing to provide new high-quality data

We could shed light on the nuclear physics behind the phenomenological g_A quenching

• Forbidden beta decays, and in particular their spectral shape, challenge the nuclear models

Mapping the spectral shape of several forbidden beta decays in terms of effective g_A

