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Motivation

@ Neutrino mass can arise from either Dirac or Majorana mass term
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@ vg neutral under all charges — Majorana mass term not forbidden

@ Majorana mass = v is own antiparticle
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Seesaw Mechanism

\\\\\\\\\\\\

\
N\

\\\\\\\

)
g
W

Image credit: Symmetry Magazine, Sandbox Studio, Ana Kova
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Leptogenesis

Universe has more matter than antimatter

Requires baryon number violation

Sphalerons: Non-perturbative, high-T SM processes that violate B, L but preserve
B-L

Can convert lepton asymmetry into baryon asymmetry

Majorana neutrinos = lepton number violation
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Double-Beta Decay
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Figure credit: Jaffe and Taylor (2018), after J. Lilley (2001)
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Experimental Signature
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Extraction of mgg
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° Tlo/”2 measured experimentally
° is effective double-beta neutrino mass
2
o = | Zk Uekmk|

G% is known kinematical factor

MO is nuclear matrix element
o Typically estimated with nuclear models (shell models, estimated potentials, etc.)
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Nuclear Models

@ Shell Model (SM): Nucleons arranged in shells, outer shell(s) studied most
closely

@ Quasiparticle random phase approximation (QRPA): Hartree-Fock
approximation plus collective excitations

e Energy density functional (EDF): Mean field approach (like QRPA) but with
additional support for large corrections away from mean field behavior

e Interacting boson model (IBM): Groups nucleons into bosonic pairs to lower
effective degrees of freedom

@ Subvariants of each model (e.g. density functional used in EDF)



Experimental Searches
000800

Nuclear Matrix Element Estimates
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Figure credit: Dolinski, Poon, Rodejohann (1902.04097)
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KamLAND-Zen Results
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Figure credit: KamLAND-Zen (2203.02139)
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nEXO Planned Sensitivity
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Nuclear Effective Field Theory

o Effective field theory (EFT): Approximate low-energy description of problem
@ Relevant degrees of freedom: Nucleons and (maybe) pions

o Pions can be included (YEFT) or excluded (EFT(#))
o EFT(s) requires fewer inputs but only works below |p| < m, ~ 135 MeV

@ Quark-gluon interactions integrated out to give hadronic couplings

@ Successful phenomonologically — can compute binding energies up to 132Sn to
within 10-20% (Binder et al., 1512.03802)
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Nuclear Effective Field Theory

o Nuclear spectrum requires NN and NNN contact interactions

o Could integrate out quark/gluon interactions but difficult
o Fit to data: NN scattering and ?H, 3H binding energies (Bansal et al., 1712.10246)

@ For YEFT, also need interactions of N, mmw, NN, etc.

@ For weak decays, also need axial and vector nucleon charges
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Nuclear EFT
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Figure credit: 1802.10097

@ Neutrino energy can be hard or soft
@ Low-energy contribution factorizes into two SM weak

currents
o Can be computed from existing experimental data

High-energy intermediate v outside of EFT validity

Need contact term to absorb high-energy behavior
(Cirigliano et al., 1710.01729, 1802.10097)
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Nuclear EFT for Ovj3j3

Figure credit: 1802.10097

EFT contact term unique to Qv 33
o No experimental data!
o Cannot be computed from 2v33
Can be computed using generalization of
Cottingham formula
o Cottingham formula = EM contribution to np
mass splitting
e Dominated (~70%) by elastic intermediate
states (w/N pole)
Dominant contribution can be estimated
theoretically (Cirigliano et al., 2102.03371)
o Likely correct to within 30% but requires
model assumptions
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Lattice QCD

@ First-principles, model-independent solution to \
hadronic physics _— :
@ Only input = Lagrangian of QCD ({mg}, as) |

o Systematically controllable errors

@ Can match to EFT, compute low energy
constants

o Caveat: Computationally expensive, especially

for large systems 1
gluon quark

Figure credit: JICFuS, Tsukuba
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OvBp for m= — 7+

@ Simplest to study in pion transition

1T — hee

e Pions give cleaner signal in lattice QCD

o Fewer quark contractions = cheaper computationally

e Can control systematic errors (FV, discretization, unphysical m;)

e Goal: Extract xPT low-energy constant g™ (for contact term)
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OvBp form™ — "
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Figure credit: 2004.07404
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Short-Distance 0v3p3

Standard O3 paradigm: Two weak currents with light Majorana neutrino
(dPLyuu)(x) Sy (x — y)(dPy*u)(y)

e Intermediate neutrino propagates across nuclear scales
e All operators fully determined by SM

Some BSM theories predict additional high-energy interactions

Integrating these out gives contact interaction (Cirigliano et al., 2003.08493)

(c_v’r,-u) (c_irju)
Relative sizes of operators (for different i, j) model dependent

NB: Contact interaction at scale of quarks/gluons
e Distinct from short-distance effective operator in nuclear EFT
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Basis of Short-Distance Ov 33 Operators

01 = (ty"dL) [trvudr] VI = (Gy"dy) [aLdR]
o e e Vs = 2 (ay"di] [oLdr) — 6 (ay*dy) [oLdg]
O3 = (uy*dp) [tryedi]
V§ = (oy"dy) [trd
Ov = (oy"dy] [oryudr) 3 (1 LyHdp) [Urdy] 1
O = (Ordt] orc) Vi = 2 (ay"di] [ardy) — 6 (oy*dy) [urdL]

e Add (L <+ R) to operators where needed
e Projection to positive parity
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Short-Distance Ov53 in YEFT
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Figure credit: Detmold et al., 2208.05322
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Short-Distance Ov53 in YEFT

@ In Weinberg power counting, dominant effect 0
of short-distance term is through wmee |
interaction |

|

Can extract coefficient from 7= — 7tee

° e
@ Only scalar operators (01, 02, 03,01/, Oy)
contribute _

o Vector operators suppressed by m./F

@ NB: Inconsistencies with Weinberg power
counting n°
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Short Distance 7= — 7" ee Amplitude
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Figure credit: Nicholson et al., 1805.02634
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Short Distance 7= — 7" ee Amplitude

Matrix elements for (7 |OMS|7=) (1 = 3 GeV), units of 1072 GeV*:

| | Callat | NPLQCD |

01 [—-19(1) |[-13(2)
Oy |—78(5) | —5.4(5)
0, |—38(3) |-25(2)
Oy | 1.2(1) 0.76(8)
O3 | 0.019(1) | 0.0087(8)

CalLat: Nicholson et al., 1805.02634
NPLQCD: Detmold, Jay, Murphy, Oare, Shanahan, 2208.05322

O3 suppressed by mfr//\f< in pionic matrix elements

Unresolved ~ 30 tension between different calculations
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Matrix Elements for nn — pp

@ Important to repeat previous calculations for nn — pp transition

o EFT coefficient gyy cannot be computed without nucleons
o Weinberg power counting (7 interactions dominate short-distance interactions) not

fully consistent
o (pp|Os3|nn) no longer suppressed by m2

o Vector operators V/* no longer suppressed by m,

@ More difficult computationally

o Contraction costs o« N,! (naively)
o Signal-to-noise problem in lattice QCD
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Neutrinoful Double-Beta Decay (2v(()

Rarest observed Standard Model process

Experimental data used as inputs or tests of nuclear models of 0v3/3 (Engel,
Menéndez, 1610.06548)

Computed for nn — pp transition from lattice QCD (Tiburzi et al., 1702.02929)
o Single lattice spacing and volume

@ No intermediate v prop — weak currents decouple
e Background field method — quark propagators computed in presence of uniform weak
field
Unphysical quark masses (m; = 800 MeV)

e Dineutron bound at this mass (1508.00886, 1610.04545)
o Or maybe not! (2108.10835, 2112.04569)
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Neutrinoful Double-Beta Decay (2v(()

@ Can write full decay amplitude as single-current pieces and two-current LEC H s

Mpp—al®> | Mg
Mnn%pp:_‘ ppAﬁ | + 472A —Ha s

o Computed as Hy s = 4.7(2.2) fm in 1702.02929

e Hi s is about 5% correction to full amplitude
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Neutrinoless Double-Beta Decay (0v53)

Asrc T Asnk

0 tx ty T
Ongoing work by Detmold, Fu, AVG, Jay, Murphy, Oare, Shanahan
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Neutrinoless Double-Beta Decay (0v53)

@ Compute matrix element from ratio of 2-point and 4-point correlation functions
Ci(t) = [ 2 (Om(2)0}n(0)
it t,1) = [ P2 x YT Ona(2) (15 ()OR (0} x,)

@ Signal resolvable for source-sink separations up to about 16a ~ 2.3 fm
o Necessary to have such large separations to study large t, — t, behavior while
suppressing excited states
o Requires much higher statistics than 2v33 calculation (3M propagators versus 49k

in 2v30)
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Neutrino Propagator

@ Long-distance amplitude contains significant contribution from low-E,, tail

o Contribution from separation 7 = t, — t, falls off as T2

e Corresponds to large temporal separation between operators
o Difficult to control (signal-to-noise problem)

@ Solution: Use zero-mode subtracted propagator (Davoudi and Kadam,
2012.02083) '

- 213 q
actizngoy 19

o Contribution falls off exponentially in 7
o Correct for zero-mode removal when matching to EFT
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Preliminary Correlator Data
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Preliminary Results

e Can estimate plateau value for C4/C, out to 7 = 9a ~ 1.3 fm
@ Constrain plateau value to exponential in 7
o Corresponds to single intermediate state (d + v)
e Higher-energy intermediate states contribute at small time
e Fit 7 = 0 separately
o Preliminary result: |[M%| = 0.26(1) (stat.) GeV?

o Systematics (excited states, renormalization) still under investigation
e ~ 10x larger than pion result (=~ 0.019 GeV?)
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Short-Distance Amplitude
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Preliminary Results for Scalar Operators

Approximate matrix elements for (f|O;|i), units of 1072 GeV*:

] | nn— pp | 7~ — " (NPLQCD) |

O;] o1 ~13(2)
Oy | —11 —5.4(5)

0, | —-10 —25(2)
Oy | —05 0.76(8)
0; | —21 0.0087(8)

@ No chiral/continuum extrapolation for nn — pp
e 01,01/ smaller for nn — pp, O3 larger

@ Others are same order of magnitude
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Preliminary Results for Vector Operators

Approximate matrix elements for (f|V;|i), units of 1072 GeV*:

L lm—pp|
V| -1
Vo -04
V3 —-0.2
Vo | —0.4

Essentially absent (suppressed by me/Aqcp) for 7= — 7
Numbers for nn — pp not renormalized (computation in progress)

No chiral/continuum extrapolation (as before)

V; slightly smaller than O; but not negligible
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Future Plans

Cannot simulate large nuclei on lattice

o Costs of simulation scale exponentially in number of quarks
o Very challenging to get beyond *He on lattice

Must compare to effective field theory approaches
Can use EFT coefficients input to current nuclear models
EFT coefficients = ab initio nuclear calculations

Improve interpretability of experimental searches



Lattice QCD Details

Dirac operator [) + m implemented as matrix coupling adjacent vertices of lattice

Quark propagators computed by inverting Dirac matrix (expensive!)

Hadronic states created and annihilated by interpolating operators, e.g.

On =P, d, (d] P+ Cysuc)

Correlation functions built from interpolating operators and current insertions

C2(tz):/d3z <Onn(z)0:rm(0)>

Ca(tz, b, ty) = / &’z d*x Py T 55" (0pp(2) Ja(x) J5(¥) 05 (0)) Su(x: )



Interpretation of Correlation Functions

@ 2-point correlation functions related to energies

(On(t)

5 (010u(Blm) a0k ()0

:Z2E<
—Z2E e 1010w m) 2

1 —Ept 2
- — H
e 100/l

0)|n)e~5(n|O},(0)[0)

@ In Euclidean time, correlation functions exponentially decay instead of oscillating

o At small time, signal has not just ground state H but tower of unwanted excited
states with energies > Eg



Effective Mass
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Short-Distance Amplitude
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Prior Extraction of M%
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