Probing low-energy QCD and BSM physics with light mesons

Sergi Gonzàlez-Solís (sergig@lanl.gov)

Genoa, June 7, 2023

The Standard Model

- Matter particles (quarks and leptons) in three families and mediator particles (bosons) of three interactions: electromagnetic, strong and weak
- Provides a consistent **description** of Nature's fundamental constituents and their interactions
- **Predictions** tested and confirmed by numerous experiments
- Experimental **completion** in 2012 (Higgs discovery)

Particles of the Standard Model

Beyond the Standard Model

- However, the SM **fails** to explain several observed phenomena in particle physics, astrophysics and cosmology:
 - **Dark matter**: what is the most prevalent kind of matter in our Universe?
 - **Dark Energy**: what drives the accelerated expansion of the Universe?

- **Neutrino** masses and oscillations: why do neutrinos have mass? what makes neutrinos disappear and then re-appear in a different form?
- **Baryon asymmetry** of the Universe: what mechanism created the tiny matter-antimatter imbalance in the early Universe?
- Several **anomalies in data**: $(g-2)_{\mu}$, *B*-physics anomalies, KOTO anomaly $(K_L \to \pi^0 \nu \bar{\nu})$, ⁸Be excited decay, ...

Energy and Intensity Frontier Research

- New Physics would be needed to explain observed phenomena
- Why have **not** new particles yet been observed?
 - Hypothetical new particles are **heavy** and require even higher collision energy to be observed \Rightarrow **Energy Frontier** research (LHC@CERN, Tevatron@FermiLab)
 - Another possibility is that our inability to observe new particles lies not in their heavy mass, but rather in their extremely
 feeble interactions ⇒ Intensity Frontier research

Dark sector physics

- Why a dark sector?
 - Many open problem in particle physics, *e.g.* dark matter, neutrino mass generation or anomalies in data, let us think about dark particles
- What is a dark sector particle?
 - Any particle that does not interact through the SM forces (not charged under the SM symmetries)

• We live in the SM world, how can we **access** (and test) the **dark sector**?

Dark sector portals to the Standard Model

We live in the Standard Model world, how can we access/test the **dark sector**?

 \Rightarrow **Portal** interactions with the SM, only a few are allowed by the SM symmetries

Portal	Mediators	
Vector	Dark photon	
Scalar	Dark scalar	
Neutrino	Sterile Neutrino	
Axion	Axion	

Portal interactions

$$\begin{split} \epsilon B^{\mu\nu} A'_{\mu\nu} \\ \kappa |H|^2 |S|^2 \\ y H L N \\ \frac{a}{f_a} \tilde{F}_{\mu\nu} F^{\mu\nu} \end{split}$$

A broad program of searches of dark particles

- Vigorous effort of the community proposing \mathbf{new} experiments & measurements

Energy frontier

Flavor-factories

LHC

Novel search strategies are needed!

Unique access to dark sectors!

experiments **NA62** SeaCuest E906

Other ongoing/future

• Plenty of dark particles can be produced from **meson decays!!**

Why is it interesting to study η/η' physics?

- Eigenstates of the C, P, CP and G operators
- Flavor **conserving** decays \Rightarrow laboratory for symmetry tests
- All their strong and EM decays are **forbidden** at lowest order, *e.g.*:

— $\eta/\eta' \to 3\pi$ break isospin, $\eta/\eta' \to 2\pi, 4\pi^0$ by P and CP, $\eta/\eta' \to \gamma\gamma$ is anomalous

- Large amount of **data** have been collected (A2, BESIII, GlueX, KLOE), **more** to come (JEF@JLab, CMS@CERN, REDTOP)
- Unique opportunity to [talks by S. Schadmand, L. Gan]:
 - Test chiral dynamics at low energy
 - Extract fundamental parameters of the Standard Model, e.g. light quark masses, $\eta\text{-}\eta^\prime$ mixing
 - Study of fundamental symmetries
 - Looking for BSM physics \Rightarrow Dark sector

Selected η/η' decays

BSM particle	Decay mode	Signal channel	Search strategy
Dark photon (A')	$\eta/\eta' \to \gamma^{(*)}A'$	$A' \to \ell^+ \ell^-$	Bump-hunt in $d\Gamma/dm_{\ell\ell}$
		$A' \to \pi^+ \pi^-$	Bump-hunt in $d\Gamma/dm_{\pi\pi}$
Leptophobic boson (B)	$\eta o \gamma B$	$B o \gamma \pi^0$	Enhancement in $m_{\pi^0\gamma}$
		$B \to \pi^+ \pi^-$	Isospin suppressed
	$\eta' \to \gamma B$	$B \to \gamma \pi^0, \pi^+ \pi^-, \pi^+ \pi^- \pi^0, \gamma \eta$	Enhancement in $m_{\pi^0\gamma}$
\mathbf{ALPs} (a)	$\eta ightarrow \pi \pi a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta' o \pi \pi a$	$a \to \gamma \gamma, \ell^+ \ell^-, \pi^+ \pi^- \gamma, 3\pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta^{(\prime)} \to \ell^+ \ell^-$		$\eta^{(\prime)}$ -a mixing
Scalar boson (S)	$\eta/\eta' ightarrow \pi^0 S$	$S \to \gamma \gamma, \ell^+ \ell^-, \pi \pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta' \to \eta S$	$S \to \gamma \gamma, \ell^+ \ell^-, \pi \pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$

Other meson decays

BSM particle	Decay mode	Signal channel	Search strategy		
ALPs (a)	$K^{\pm} \to \pi^{\pm} a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$		
	$K^{\pm} \to \pi^{\pm} \pi^0 a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell,\ell}$		
	$K_L \to \pi^0 a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$		
	$K_L \to \pi^0 \pi^0 a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$		
	$K_L \to \pi^+ \pi^- a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$		
	$B^{\pm} \to \pi^{\pm} a$	$a \to \ell^+ \ell^-, 3\pi, \eta \pi \pi, KK\pi$	Higher ALP masses		
	$B^{\pm} \to K^{\pm} a$	$a \to \ell^+ \ell^-, 3\pi, \eta \pi \pi, KK\pi$	Higher ALP masses		
	$B \to K^* a$	$a \to \ell^+ \ell^-, 3\pi, \eta \pi \pi, KK\pi$	Higher ALP masses		
	$\omega/\phi/J/\psi \to \pi^0\pi^0 a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$		
	$\omega/\phi/J/\psi \to \pi^0\pi^0 a$	$a \to \pi^+ \pi^- \gamma, 3\pi$			
Dark photon (A')	$\pi^0 \to \gamma A'$	$A' \to e^+ e^-$	e^+e^- resonance		
	$\pi^0 \to \gamma^* A'$	$\gamma^* \to e^+e^-, A' \to e^+e^-$	e^+e^- resonance		
	$\omega/\phi/J/\psi \to \pi^0 A'$	$A' \to \ell^+ \ell^- \ (\ell = e, \mu)$	$\ell^+\ell^-$ resonance		
	$\omega/\phi/J/\psi \to \pi^0 A'$	$A' \to \pi^+ \pi^-$	$\pi^+\pi^-$ resonance		
Leptophobic boson (B)	$\omega/\phi \to \eta B$	$B \to \gamma \pi^0$	Enhancement in $m_{\pi^0\gamma}$		
See also talks by [J. Pinzino, A. Notari]					

Testing Axion-like particles with η/η' decays

• ALP Lagrangian coupled to QCD

$$\mathcal{L}_{\rm ALP} = \mathcal{L}_{\rm QCD} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} M_a^2 a^2 - Q_G \frac{\alpha_s}{8\pi} \frac{a}{f_a} G_{\mu\nu} \tilde{G}^{\mu\nu} + \sum_{q_i} m_q \bar{q}_i \left(e^{iQ_{q_i}} \frac{a}{f_a} \gamma_5 \right) q_i \,,$$

• Step 1: map \mathcal{L}_{ALP} into χPT at leading order

$$\mathcal{L}_{ALP}^{\chi PT@LO} = \frac{f_{\pi}^{2}}{4} \text{Tr} \Big[\partial_{\mu} U^{\dagger} \partial^{\mu} U \Big] + \frac{f_{\pi}^{2}}{4} \Big[2B_{0} (M_{q}(a)U + M_{q}(a)^{\dagger}U^{\dagger}) \Big] - \frac{1}{2} m_{0}^{2} \left(\eta_{0} - \frac{Q_{G}}{\sqrt{6}} \frac{f_{\pi}}{f_{a}} a \right)^{2} + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} M_{a}^{2} a^{2} M_{q}(a) = \text{diag}(m_{u} e^{iQ_{u}a/f_{a}}, m_{d} e^{iQ_{d}a/f_{a}}, m_{s} e^{iQ_{s}a/f_{a}})$$

- Step 2: diagonalization of the mass matrix \Rightarrow mixing angles: $\theta_{a\pi}, \theta_{\eta_8 a}, \theta_{\eta_0 a}$
- Step 3: re-express $\mathcal{L}_{ALP}^{\chi PT@LO}$ in terms of the **physical states**

 $\pi^0 \to \pi^0 + \theta_{a\pi} a^{\rm phys} \,, \quad \eta_8 \to \cos \theta \eta + \sin \theta \eta' + \theta_{\eta_8 a} a^{\rm phys} \,, \quad \eta_0 \to -\sin \theta \eta + \cos \theta \eta' + \theta_{\eta_0 a} a^{\rm phys} \,,$

• ALP mass

$$m_a^2 = \frac{\left(Q_u + Q_d + Q_s + Q_G\right)^2}{1 + \epsilon} \frac{m_u m_d}{(m_u + m_d)^2} \frac{m_\pi^2 f_\pi^2}{f_a^2} + M_a^2,$$
11/18

$\eta/\eta' \to \pi\pi a$ decays

• $\eta/\eta' \to \pi \pi a$ decay amplitude:

$\eta/\eta' \to \pi\pi a$ decays

• $\eta/\eta' \to \pi \pi a$ decay amplitude:

Effects of pion-pion rescattering

$$\mathcal{A}(s) = \mathcal{A}(\eta \to 2\pi^0 a)|_{\mathrm{LO}} \times \Omega_0^0(s) ,$$

$$\Omega_0^0(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty ds' \frac{\delta_0^0(s')}{s'(s'-s-i\varepsilon)}\right\},$$

S. Gonzàlez-Solís and D. Spier, to appear

 π

$\eta/\eta' \to \pi^0 a a$ decays

• One extra power of $1/f_a$ suppression

- Exploring **dark sectors** is an important and growing element of BSM physics
- A wealth of exciting ongoing **experiments** exist
- Meson decays offer a unique opportunity to look for New Physics
- We have tested ALPs with $\eta/\eta' \to \pi \pi a$ decays
 - We encourage searches in $\eta/\eta' \to \pi\pi a \to \pi\pi\gamma\gamma, \pi\pi\ell^+\ell^-$ (BESIII, KLOE, CMS, REDTOP)

Production modes and detection signatures Decay modes Production modes e^+ A_{μ} Bremsstrahlung Annihilation visible >>>>> A'__ Meson decay Drell-Yan invisible • Broad worldwide effort to search for dark photons (most in $A' \rightarrow e^+e^-$ decays) Current exp. sensitivity Future prospects $\omega 10^{-1}$ $\omega 10^{-2}$ 10- 10^{-1} 10^{-4} 10^{-4} 10^{-5} 10^{-5} TICL: ULBERGERED, 200 Bell Glause 10^{-6} CHARM 10^{-6} 10^{-7} 10^{-1} E137 SHiP 10^{-8} 10^{-8} SN1987A arXiv: 2005.01515 10^{-9} 10 10^{2} 10-3 10^{-2} 10^{-1} 10^{2} 10^{3} 10-103 10 10-2 10^{-1} 10 m. [GeV] m_A [GeV] 18/18