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Understanding β Decays:  
A Cornerstone of the Standard Model
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Existence of neutrinos to explain the continuous  spectrum (Pauli, 1930) 

Contact theory of  decay (Fermi, 1933) 

Parity violation in  decay (Lee, Yang 1956 & Wu 1957) 

V - A theory (Sudarshan & Marshak and Gell-Mann & Feynman, 1957) 

Radiative corrections to 4-Fermi theory: important step to the Standard Model 

RC to muon decay UV finite for V-A —>  

But RC to neutron decay - log UV divergent! 

UV behavior of  decay rate at 1-loop (Sirlin, 1967) 

 average charge of fields involved:  but  

Standard Model with massive W,Z-bosons (Glashow-Salam-Weinberg, 1967)

β

β

β

GF = Gμ = 1.1663788(7) × 10−5GeV−2

β

Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by
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where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions



Precision, Universality and CKM unitarity
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In SM the same coupling of W-boson to leptons and hadrons,  =  

Before RC were included:  

Large  in RC for neutron —>  

Kaon and hyperon decays? ( ) — even lower rates! 

Cabibbo: strength shared between 2 generations 

Cabibbo unitarity:  

Kobayashi & Maskawa: 3 flavors + CP violation — CKM matrix V

GV Gμ

GV ∼ 0.98Gμ

log(MZ /Mp) GV ∼ 0.95Gμ

ΔS = 1

cos2 θC + sin2 θC = 1

|GΔS=0
V | = cos θCGμ

|GΔS=1
V | = sin θCGμ

CKM unitarity - completeness of the SM:   
Top row unitarity constraint: 

VV† = 1
|Vud |2 + |Vus |2 + |Vub |2 = 1

Detailed understanding of  decays largely shaped the Standard Modelβ



Status of top-row CKM unitarity 
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|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud
(4)Vus

∼ 10−5∼ 0.95 ∼ 0.05
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Inconsistencies between measurements of  and  and SM predictions 
Main reason for Cabibbo-angle anomaly: shift in  (and small uncertainties?)

Vud Vus
Vud



Status	of	Vud

 uncertainty: factor 2 reduc0onΔV
R

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804; 
C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001; 
MG, Phys.Rev.Lett. 123 (2019) 4, 042503; 
C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301; 
A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng,  
Phys.Rev.Lett. 124 (2020) 19, 192002

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501gA = − 1.27641(56)
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Universal correction  to free and bound neutron decay 
Identified 40 years ago as the bottleneck for precision improvement 
Novel approach dispersion relations + experimental data + EFT + lattice QCD

ΔV
R

Theory: Major reduction of uncertainties in the past few years

RC to semileptonic pion decay

 Factor 3 reduc0onδ

Experiment

Factor 4 reduc0on

UCN  F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501ττn = 877.75(28)+16
−12

Factor 2-3 reduc0on

aSPECT M. Beck et al, Phys. Rev. C101 (2020) 5, 055506gA = − 1.2677(28)

 uncertainty: factor 3 increase!!!δNS

τn = 887.7(2.3) BL1 (NIST) Yue et al, PRL 111 (2013) 222501



Status	of	Vud
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0+-0+ nuclear decays: long-standing champion

|Vud |2 =
2984.43s

ℱt(1+ΔV
R) |V0+−0+

ud | = 0.97370 (1)exp, nucl (3)NS (1)RC[3]total

Nuclear uncertainty x 3

|Vud |2 =
5024.7 s

τn(1 + 3gA2)(1+ΔR)

Neutron decay: discrepancies in lifetime  and axial charge ; competitive!τn gA

|V free n
ud | = 0.9733 (2)τn

(3)gA
(1)RC[4]total

Single best measurements only

PDG average
|V free n

ud | = 0.9733 (3)τn
(8)gA

(1)RC[9]total

RC not a limiting factor: more precise experiments  a-coming

|Vπℓ3
ud | = 0.9739 (27)exp (1)RC

Pion decay : theoretically cleanest, experimentally toughπ+ → π0e+νe

|Vud |2 =
0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1 Future exp: 1 o.o.m. (PIONEER)



RC to nuclear beta decay: overall setup



RC to nuclear beta decay: overall setup

Tree-level amplitude

8

Electron carries away energy E < Q-value of a decay

i = n, A(0+) f = p, A′ (0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:

Energy scales Λ



RC to nuclear beta decay: overall setup

Tree-level amplitude

8

Electron carries away energy E < Q-value of a decay

i = n, A(0+) f = p, A′ (0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:

Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV

Electron mass

Decay Q-value (endpoint energy)

Λnuc = 10 − 30 MeV

Λ

Energy scales Λ



RC to nuclear beta decay: overall setup

Tree-level amplitude

8

Electron carries away energy E < Q-value of a decay

i = n, A(0+) f = p, A′ (0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:

Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV

Electron mass

Decay Q-value (endpoint energy)

Λnuc = 10 − 30 MeV

Λ

Energy scales Λ
Same for all nuclei

Nuclear structure dependent  
(QCD)

Nucleus-specific

Nuclear structure independent  
(QED)



RC to beta decay: overall setup
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Generically: only IR and UV extremes feature large logarithms! 
Works by Sirlin (1930-2022) and collaborators: all large logs under control

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250
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singular pieces in the loop diagrams
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Radiative Corrections:Pre-SM
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Sirlin function (outer correction): 
All IR-div. pieces beyond Coulomb distortion

Fermi function: resummation of (Z𝛼)n —> Dirac - Coulomb problem

IR: Fermi function + Sirlin function
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment

W,Z - loops 
UV structure of SM

Inner RC:  
energy- and model-independent

UV: large EW logs + pQCD corrections

-box: sensitive to all scalesγW
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The only piece that depends on physics at hadronic scale is the V*A term in the WJ�box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

New method for computing EW boxes: dispersion theory 
Combine exp. data with pQCD, lattice, EFT, ab-initio nuclear



Dispersion Formalism for -boxγW
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4

Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020
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Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020

-box from dispersion relationsγW

Generalized Compton tensor  
time-ordered product — complicated!

Commutator (Im part) - only on-shell  
hadronic states — related to data

∫ dxeiqx⟨Hf(p) | [Jμ
em(x), Jν,±

W (0)] |Hi(p)⟩∫ dxeiqx⟨Hf(p) |T{Jμ
em(x)Jν,±

W (0)} |Hi(p)⟩

Model-dependent part or RC: -boxγW

Physics of taming model dependence with dispersion relations:  

virtual photon polarizes the nucleon/nucleus;  
Long- and intermediate-range part of the box sensitive to hadronic polarizabilities 
Polarizabilities related to the excitation spectrum via dispersion relation  
(Cf. Kramers-Kronig)

Generalized (non-diagonal) Compton amplitudes Interference structure functions
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Universal RC from dispersion relations
ImTμν

γW = … +
iεμναβpαqβ

2(pq)
FγW

3 (x, Q2)Interference  structure functionsγW

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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, (41)

where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:

Re⇤b,e
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e )

(42)

which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms
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After some algebra (isospin decomposition, loop integration)

Advantage to previous approach (Marciano & Sirlin):  
- Explicit 2-fold integral, isospin decomposition and energy dependence

M3(n, Q2) =
n + 1
n + 2 ∫

1

0

dxξn

x2

2x(n + 1) − nξ
n + 1

F3(x, Q2), ξ =
2x

1 + 1 + 4M2x2 /Q2

Nachtmann moments 
play a role in DIS

moment,

M 0
1,+(2, Q

2) ⌘

✓
Q2

M

◆2 Z 1

⌫thr

d⌫ 0

⌫ 0
2⌫ 0

(⌫ 0 +
p
⌫ 02 +Q2)3

F1,+(xB, Q2)

f+(0)
, (48)

which reduces to the respective Mellin moment at large Q2, M 0
1,+(2, Q

2) ! M̃1,+(2, Q2). In

terms of these Nachtmann moments, Eqs.(42), (45) become
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Assuming these two pieces together give a precise enough description of the nuclear �W -box

diagram (which needs to be checked by studying its convergence speed), we write,

Re⇤nucl
�W �⇤n

�W ⇡
3↵

2⇡

Z 1

0

dQ2

Q2

n⇥
Mnucl

3,� (1, Q2)�Mn
3,�(1, Q

2)
⇤

+
8EeM

9Q2


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3,+ (2, Q2)� ⌘M 0nucl
1,+ (2, Q2)�

3

2
⌘Mnucl

2,� (1, Q2)

�o
. (50)

Above, the factor M2
W/(M2

W + Q2) was removed because the physics at Q2
⇠ M2

W is not

probed. As is well-known, the asymptotic contribution to ⇤�W is process-independent and

cancels between Mnucl
3,� and Mn

3,�. Plugging this into Eq.(30) gives us a closed expression for

�NS. Below we discuss some aspects important for evaluating it.

Relevant region of the Q2-integral:

While the integral in Eq.(50) is insensitive to asymptotically high Q2, we need to find out,

starting from which value of Q2 = Q2
nucl the cancellation between the nuclear and nucleon

boxes is at such a level that a precise enough determination of �NS can already be obtained

with Q2
nucl as an upper limit. The first Nachtmann moment for a free nucleon, Mn

3,�(1, Q
2),

has been studied recently as a function of Q2 using phenomenological [15, 16, 19, 20] and

indirect lattice inputs [18]. It was found that by Q2
⇡ 2GeV2 the perturbative description

sets in, and we can expect that Q2
nucl < 2GeV2. A trial calculation of Mnucl

3,+ (1, Q2) at

Q ⇠ 100 � 300 MeV may already provide a useful hint. As evidenced by the entries in

Table I, even a ⇠ 10% determination of Mnucl
3,+ (1, Q2) will significantly improve the precision

of �NS for most nuclei.
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Hiding the nu-integration in the Nachtmann moments:



Input into dispersion integral
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FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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Dispersive Approach: Formalism

Dispersion in energy:  
scanning hadronic intermediate states

Dispersion in Q2:  
scanning dominant physics pictures

Boundaries between regions - approximate 

Input in DR related (directly or indirectly) 
to experimentally accessible data 

13

W2 = M2 + 2Mν − Q2

2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

El
as

tic



Input into dispersion integral -  dataν/ν̄
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Isospin symmetry: vector-isoscalar current related to vector-isovector current

Mixed CC-NC  SF (no data) <—> Purely CC WW SF (inclusive neutrino data)γW

Only useful if we know the physical mechanism (Born, DIS, Regge, Resonance,…)
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Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!
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Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

Marciano, Sirlin 2006:  —> ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR (Seng et al. 2018):  —> ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC

Only useful if we know the physical mechanism (Born, DIS, Regge, Resonance,…)
Were able to identify the missing part with Regge (multiparticle continuum)



-box from DR + Lattice QCD inputγW
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Currently available neutrino data at low  - low quality; 
Look for alternative input — compute Nachtmann moment  on the lattice

Q2

M(0)
3

First direct LQCD computation π− → π0e−νe Feng,	MG,	Jin,	Ma,	Seng	2003.09798

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

5 LQCD gauge ensembles at physical pion mass 
Generated by RBC and UKQCD collaborations  
w. 2+1 flavor domain wall fermion

10

First lattice QCD calculation

(integral range, 64I)

Estimate of major systematic effects:
● Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
● pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
● Higher-twist effects at large Q2: Estimated from lattice calculation of type (A) diagrams  

Final result:

1% precision!

(before cont. extrapolation) (after cont. extrapolation)

Match onto pQCD at Q2 ∼ 2 GeV2

Yoo	et	all,	2305.03198

Independent calculation by Los Alamos group

□VA, π
γW = 2.830(11)stat(26)sys

□VA, π
γW = 2.810(26)stat+sys



First lattice QCD calculation of -boxγW

Significant reduction of the uncertainty! δ : 0.0334(10)LEC(3)HO → 0.0332(1)γW(3)HO

16

Direct impact for pion decay π+ → π0e+νe |Vud |2 =
0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1

Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003 Previous calculation of   — in ChPTδ
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Analogous result for  decays:Kℓ3
□VA, K

γW = 2.437(44)stat+sys □VA, K
γW = 2.389(17)stat+sys
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(1+δ)

Γπℓ3

0.3988(23) s−1
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Indirectly constrains the free neutron -box 
— requires some phenomenology  
Based on Regge universality & factorization

γW

12

Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Seng,	MG,	Feng,	Jin,	2003.11264

Independent confirmation of the  
empirical DR result AND uncertainty 
ΔV

R = 0.02467(22)DR → 0.02477(24)LQCD+DR

Analogous result for  decays:Kℓ3
□VA, K

γW = 2.437(44)stat+sys □VA, K
γW = 2.389(17)stat+sys

Ma,	Feng,	MG,	Jin,	Seng	2102.12048 Yoo	et	all,	2305.03198
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Indirectly constrains the free neutron -box 
— requires some phenomenology  
Based on Regge universality & factorization

γW

12

Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Seng,	MG,	Feng,	Jin,	2003.11264

Independent confirmation of the  
empirical DR result AND uncertainty 
ΔV

R = 0.02467(22)DR → 0.02477(24)LQCD+DR

Analogous result for  decays:Kℓ3
□VA, K

γW = 2.437(44)stat+sys □VA, K
γW = 2.389(17)stat+sys

Ma,	Feng,	MG,	Jin,	Seng	2102.12048 Yoo	et	all,	2305.03198

Direct LQCD calculation on the neutron underway by two groups!



Superallowed nuclear decays



Precise  from superallowed decaysVud

18

Superallowed	0+-0+	nuclear	decays:		
- only	conserved	vector	current		
- many	decays	
- all	rates	equal	modulo	phase	space

Experiment:	f	-	phase	space	(Q	value)	and	t	-	parAal	half-life	(t1/2,	branching	raAo)
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H	values:	same	within	~2%	but	not	exactly!	
Reason:	SU(2)	slightly	broken	
a. RC	(e.m.	interacAon	does	not	conserve	isospin)	
b. Nuclear	WF	are	not	SU(2)	symmetric		
						(proton	and	neutron	distribuAon	not	the	same)

33

Superallowed 0+ → 0+ nuclear beta decay

The simplest 
nuclear beta
decay!

“Outer correction”
Nuclear structure

effects in inner RC
Isospin-breaking

correction

experimental
ft-value free-nucleon 

inner RC

(discussed before)

(well under control)



Splitting the γW-box into Universal and Nuclear Parts 

19

To obtain Vud —> absorb all decay-specific corrections into universal Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)

Outer: QED Isospin-breaking Nuclear structure Universal inner
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Ft = 3072.1± 0.7

Average	of	14	decays	-	0.02%

Hardy,	Towner	1973	-	2020



Splitting the γW-box into Universal and Nuclear Parts 
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Input in the DR for the universal RC Input in the DR for the RC on a nucleus

Towards a coherent and unified picture of neutrino-nucleus interactions

* An accurate understanding of nuclear structure and dynamics is required to

disentangle new physics from nuclear effects *

* ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays

* ω ∼ few MeV, q ∼ 102 MeV: Neutrinoless ββ -decays

* ω ! tens MeV: Nuclear Rates for Astrophysics

* ω ∼ 102 MeV: Accelerator neutrinos, ν-nucleus scattering

2 / 23

ΔV
R ∝ Ffree n

3 ∝ ∫ dxeiqx ∑
X

⟨p |Jμ,(0)
em (x) |X⟩⟨X |Jν,+

W (0) |n⟩

ΔV
R + δNS ∝ FNucl.

3 ∝ ∫ dxeiqx ∑
X′ 

⟨A′ |Jμ,(0)
em (x) |X′ ⟩⟨X′ |Jν,+

W (0) |A⟩

RC on a free neutron

RC on a nucleus

δNS =
2α
πM ∫

few GeV2

0
dQ2 ∫

νπ

νthr

dν
ν [ ν + 2q

(ν + q)2 (F(0) Nucl.
3 − F(0), B

3 ) +
2⟨E⟩

3
ν + 3q

(ν + q)3
F(−) Nucl.

3 ]
 from DR with energy dependence averaged over the spectrumδNS

NS correction reflects extraction of the free box δNS = 2[ □VA, nucl
γW − □VA, free n

γW ]
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12

data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.

Working with the nucleons as the relevant degrees of
freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
the one-body current contribution, we write the nuclear
�W Compton amplitude schematically as

T �W nuc

µ⌫ ⇠ hf |JW
µ Gnuc J

EM

⌫ |ii (57)

where |ii and |fi are the intitial and final nuclear states;
JW
µ and JEM

⌫ are the weak charged current and electro-
magnetic current, respectively; and

Gnuc =
X

n

|nihn|

En � E0

(58)

is the nuclear Green’s function (we have omitted space-
time arguments for simplicity). Considering first fully
relativistic nucleons described by Dirac spinors N , the
one-body weak current in momentum space is

JW
µ =

X

k

N̄k

⇥
gA(Q

2)⌧3(k)�µ + · · ·
⇤
Nk

⌘

X

k

JW
µ (k) (59)

where the “+ · · · ” indicate contributions from the weak
magnetism and induced pseudoscalar terms and where
the sum is over all nucleons k = 1, . . . , A. A correspond-
ing expression involving the charge and magnetic form
factors applies to JEM

⌫ .
In the treatment of Ref. [5], the one-body contribu-

tion to the matrix element in Eq. (57) is decomposed
into two terms: (A) a contribution singling out the same
nucleon in JW

µ and JEM
⌫ ; (B) a contribution involving

distinct nucleons in these two operators. For purposes of
the following discussion, it is useful to identify these two
contributions using Eqs. (57 - 59):

T �W nuc

µ⌫ ⇠

X

k,`

hf |JW
µ (k)Gnuc J

EM

⌫ (`)|ii (60)

= TA
µ⌫ + TB

µ⌫

where

TA
µ⌫ =

X

k

hf |JW
µ (k)Gnuc J

EM

⌫ (k)|ii (61)

TB
µ⌫ =

X

k 6=`

hf |Wµ (k)Gnuc J
EM

⌫ (`)|ii (62)

Here, TA
µ⌫ and TB

µ⌫ correspond, respectively, to contri-
butions (A) and (B) mentioned above. The authors of
Ref. [5] refer to a part of contribution (A) as the nu-
clear Born term, while contribution (B) is included as a
separate part of �NS .
As first articulated in the earlier work of Ref. [44],

the nuclear Born term is evaluated by replacing the free
nucleon isovector axial form factor gA(Q2) and isoscalar
magnetic form factor GM (Q2) by “quenched” values.
This procedure is motivated by the observation that use
of the free nucleon form factors in the one-body cur-
rents over-predicts the strength of nuclear Gamow-Teller
transitions and nuclear magnetic moments [48, 49]. The
corresponding isoscalar magnetic moment and isovector

axial coupling quenching parameters, q(0)S and qA, re-
spectively, then describe the reduction of the spin-flip
interaction strengths in the nuclear environment, with

q(0)S , qA  1. In evaluating the nuclear Born contribution
to ⇤VA

�W , the authors of Ref. [5] then evaluate the contri-
bution (A) as described above but with these quenching
factors applied:

TA
µ⌫ !

X

k

hf |gJW
µ (k)Gnuc

gJEM
⌫ (k)|ii (63)

!

X

k

hf |gJW
µ (k)

h
SF ⌦GA00

nuc

i
gJEM
⌫ (k)|ii

where fJµ denotes a current operator containing the
quenching factor and where, in the last step, the nuclear
Green’s function has been replaced by the direct product
of the free nucleon propagator, SF , and the Green’s func-
tion for an intermediate “spectator nucleus”, A00. The
loop integral used in obtaining CB for the free nucleon,
which contains SF , is then evaluated without further ref-
erence to the spectator nucleus but with the quenched
form factors included. One then writes,

C free n

B ! C Nucl.
B = C free n

B + [q(0)S qA � 1]C free n

B , (64)

and includes the second term on the RHS of Eq. (64) in
�NS .
Note that this treatment relies on several assumptions:

(i) the impact of the nuclear environment is dominated
by the transitions to the low-lying states |ni; (ii) the
nucleon form factors entering the �W box graph for a
single nucleon should inherit the impact of this appar-
ent modification of the one-body currents in low-lying
nuclear transitions; (iii) the quenching observed for pure
Gamow-Teller and for magnetic moments and pure mag-
netic transitions translates directly into a mixed Gamow-
Teller ⌦ magnetic response via the product of the cor-

Need to know the full nuclear Green’s function

(A) same active nucleon 

(B) two nucleons correlated by G

Elastic nucleon box —> single N QE knockout

12

Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

G
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Specifically nuclear effect
δNS =

Splitting the γW-box into Universal and Nuclear Parts 
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data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.

Working with the nucleons as the relevant degrees of
freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
the one-body current contribution, we write the nuclear
�W Compton amplitude schematically as

T �W nuc

µ⌫ ⇠ hf |JW
µ Gnuc J

EM

⌫ |ii (57)

where |ii and |fi are the intitial and final nuclear states;
JW
µ and JEM

⌫ are the weak charged current and electro-
magnetic current, respectively; and

Gnuc =
X

n

|nihn|

En � E0

(58)

is the nuclear Green’s function (we have omitted space-
time arguments for simplicity). Considering first fully
relativistic nucleons described by Dirac spinors N , the
one-body weak current in momentum space is

JW
µ =

X

k

N̄k

⇥
gA(Q

2)⌧3(k)�µ + · · ·
⇤
Nk

⌘

X

k

JW
µ (k) (59)

where the “+ · · · ” indicate contributions from the weak
magnetism and induced pseudoscalar terms and where
the sum is over all nucleons k = 1, . . . , A. A correspond-
ing expression involving the charge and magnetic form
factors applies to JEM

⌫ .
In the treatment of Ref. [5], the one-body contribu-

tion to the matrix element in Eq. (57) is decomposed
into two terms: (A) a contribution singling out the same
nucleon in JW

µ and JEM
⌫ ; (B) a contribution involving

distinct nucleons in these two operators. For purposes of
the following discussion, it is useful to identify these two
contributions using Eqs. (57 - 59):

T �W nuc

µ⌫ ⇠

X

k,`

hf |JW
µ (k)Gnuc J

EM

⌫ (`)|ii (60)

= TA
µ⌫ + TB

µ⌫

where

TA
µ⌫ =

X

k

hf |JW
µ (k)Gnuc J

EM

⌫ (k)|ii (61)

TB
µ⌫ =

X

k 6=`

hf |Wµ (k)Gnuc J
EM

⌫ (`)|ii (62)

Here, TA
µ⌫ and TB

µ⌫ correspond, respectively, to contri-
butions (A) and (B) mentioned above. The authors of
Ref. [5] refer to a part of contribution (A) as the nu-
clear Born term, while contribution (B) is included as a
separate part of �NS .
As first articulated in the earlier work of Ref. [44],

the nuclear Born term is evaluated by replacing the free
nucleon isovector axial form factor gA(Q2) and isoscalar
magnetic form factor GM (Q2) by “quenched” values.
This procedure is motivated by the observation that use
of the free nucleon form factors in the one-body cur-
rents over-predicts the strength of nuclear Gamow-Teller
transitions and nuclear magnetic moments [48, 49]. The
corresponding isoscalar magnetic moment and isovector

axial coupling quenching parameters, q(0)S and qA, re-
spectively, then describe the reduction of the spin-flip
interaction strengths in the nuclear environment, with

q(0)S , qA  1. In evaluating the nuclear Born contribution
to ⇤VA

�W , the authors of Ref. [5] then evaluate the contri-
bution (A) as described above but with these quenching
factors applied:

TA
µ⌫ !

X

k

hf |gJW
µ (k)Gnuc

gJEM
⌫ (k)|ii (63)

!

X

k

hf |gJW
µ (k)

h
SF ⌦GA00

nuc

i
gJEM
⌫ (k)|ii

where fJµ denotes a current operator containing the
quenching factor and where, in the last step, the nuclear
Green’s function has been replaced by the direct product
of the free nucleon propagator, SF , and the Green’s func-
tion for an intermediate “spectator nucleus”, A00. The
loop integral used in obtaining CB for the free nucleon,
which contains SF , is then evaluated without further ref-
erence to the spectator nucleus but with the quenched
form factors included. One then writes,

C free n

B ! C Nucl.
B = C free n

B + [q(0)S qA � 1]C free n

B , (64)

and includes the second term on the RHS of Eq. (64) in
�NS .
Note that this treatment relies on several assumptions:

(i) the impact of the nuclear environment is dominated
by the transitions to the low-lying states |ni; (ii) the
nucleon form factors entering the �W box graph for a
single nucleon should inherit the impact of this appar-
ent modification of the one-body currents in low-lying
nuclear transitions; (iii) the quenching observed for pure
Gamow-Teller and for magnetic moments and pure mag-
netic transitions translates directly into a mixed Gamow-
Teller ⌦ magnetic response via the product of the cor-

Need to know the full nuclear Green’s function

(A) same active nucleon 

(B) two nucleons correlated by G

Elastic nucleon box —> single N QE knockout
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion
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Splitting the γW-box into Universal and Nuclear Parts 

C-Y Seng, MG, M J Ramsey-Musolf 1812.03352
MG 1812.04229

ℱt = 3072.1(7)s δℱt = − (3.5±1.0)s + (1.6±0.5)s
δℱt = − (1.8 ± 0.4)s + (0 ± 0)sHT value 2018:

New estimate:
Old estimate:

Nuclear structure uncertainty tripled! ℱt = (3072 ± 2)s

δNS =
2α
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few GeV2

0
dQ2 ∫

νπ

νthr

dν
ν [ ν + 2q

(ν + q)2 (F(0) QE
3 − F(0), B

3 ) +
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3
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(ν + q)3
F(−) QE

3 ]
QE contribution from DR: δQE
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Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain

Re⇤b,even
�W (Ee) =

↵

2⇡Ee

1

Mf+(0)

Z 1
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dQ2 M2
W

M2
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�
, (41)

where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:

Re⇤b,even
�W (Ee) =

↵

⇡

Z 1

0

dQ2 M2
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M2
W +Q2

Z 1
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e )
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Z 1
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d⌫ 0

⌫ 0
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p
⌫ 02 +Q2

(⌫ 0 +
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Mf+(0)
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e )

(42)

which recovers Eq.(10) in Ref.[74] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms
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TABLE X. Corrections δ′
R , δNS, and δC that are applied to

experimental f t values to obtain F t values.

Parent δ′
R δNS δC1 δC2 δC

nucleus (%) (%) (%) (%) (%)

Tz = −1
10C 1.679 −0.345(35) 0.010(10) 0.165(15) 0.175(18)
14O 1.543 −0.245(50) 0.055(20) 0.275(15) 0.330(25)
18Ne 1.506 −0.290(35) 0.155(30) 0.405(25) 0.560(39)
22Mg 1.466 −0.225(20) 0.010(10) 0.370(20) 0.380(22)
26Si 1.439 −0.215(20) 0.030(10) 0.405(25) 0.435(27)
30S 1.423 −0.185(15) 0.155(20) 0.700(20) 0.855(28)
34Ar 1.412 −0.180(15) 0.030(10) 0.665(55) 0.695(56)
38Ca 1.414 −0.175(15) 0.020(10) 0.745(70) 0.765(71)
42Ti 1.427 −0.235(20) 0.105(20) 0.835(75) 0.940(78)
Tz = 0
26mAl 1.478 0.005(20) 0.030(10) 0.280(15) 0.310(18)
34Cl 1.443 −0.085(15) 0.100(10) 0.550(45) 0.650(46)
38mK 1.440 −0.100(15) 0.105(20) 0.565(50) 0.670(54)
42Sc 1.453 0.035(20) 0.020(10) 0.645(55) 0.665(56)
46V 1.445 −0.035(10) 0.075(30) 0.545(55) 0.620(63)
50Mn 1.444 −0.040(10) 0.035(20) 0.610(50) 0.645(54)
54Co 1.443 −0.035(10) 0.050(30) 0.720(60) 0.770(67)
62Ga 1.459 −0.045(20) 0.275(55) 1.20(20) 1.48(21)
66As 1.468 −0.060(20) 0.195(45) 1.35(40) 1.55(40)
70Br 1.486 −0.085(25) 0.445(40) 1.25(25) 1.70(25)
74Rb 1.499 −0.075(30) 0.115(60) 1.50(26) 1.62(27)

cautious. Furthermore, because the uncertainty is associated
with the Z2α3 term, it is expected to be a smooth function
of Z2 and thus to behave systematically since any shift in the
value of δ′

R must affect all F t values in the same direction.
We then proceed as follows: We evaluate the individual

transition F t values without including any uncertainties
associated with δ′

R and obtain an average F t . Then we shift all
the individual δ′

R terms up and down by one-third of the Z2α3

contribution, recalculate the F t values and determine F t for
both. The shifts in the value of the latter—±0.36 s for the data
in Table IX—becomes the systematic uncertainty assigned to
F t to account for the uncertainty in δ′

R. Note that our choice to
take one-third of the Z2α3 term is rather arbitrary, but has the
benefit that it is still conservative and at the same time results
in the uncertainty in δ′

R having an impact on the overall result
that is comparable to its impact in our previous survey [6].

We turn now to the third radiative term δNS, which arises
from an evaluation of the low-energy part of the γW -box
graph for an axial-vector weak interaction. If it is assumed
that the γN and WN vertices are both with the same nucleon,
N , then the evaluated box graph becomes proportional to
the Fermi β-decay operator, yielding a universal correction
already included in %V

R.
If instead the γ and W interactions in the γW -box

graph for an axial-vector current are with different nucleons
in the nucleus, then the evaluation involves two-nucleon
operators, which necessitates a nuclear-structure calculation.
This component of the radiative correction we denote by δNS
and list its values in column 3 of Table X. The values and their
uncertainties have been taken from Table VI in Ref. [192].

For this correction term, a number of model calculations were
carried out for each nucleus [192] and the uncertainties listed
were chosen to encompass the spread in the results from these
calculations. Therefore the uncertainty is nucleus-specific and,
as such, can be treated as statistical and not systematic. We
thus combine it in quadrature with the experimental errors in
determining the F t-value uncertainties.

2. Isospin-symmetry-breaking correction

In this section we describe only the set of isospin-
symmetry-breaking corrections, δC , that we have used in
deriving the corrected F t values given in Table IX. A
discussion of other alternative calculations of δC—and our
reasons for rejecting them—is postponed to Sec. IV. The set we
have selected follows from a semiphenomenological approach
based on the shell model combined with Woods-Saxon radial
functions. This model, which we designate as SM-WS, has
been described in detail by us in Ref. [192], where also
the results for δC are tabulated. We describe the model only
briefly here, while making two minor updates to our previous
results.

The calculation is done in two parts, which is made possible
by our dividing δC into two terms:

δC = δC1 + δC2. (4)

The idea is that δC1 follows from a tractable shell-model
calculation that does not include significant nodal mixing,
while δC2 corrects for the nodal mixing that would be present
if the shell-model space were much larger.

For δC1, a modest shell-model space (usually one major
oscillator shell) is employed, in which Coulomb and other
charge-dependent terms are added to the charge-independent
effective Hamiltonian customarily used for the shell model.
These charge-dependent additional terms are separately ad-
justed for each superallowed β transition to reproduce the
b and c coefficients of the isobaric multiplet mass equation
(IMME) for the triplet of T = 1, 0+ states that includes the
parent and daughter states of the transition.

Since the Coulomb force is long range, its influence in
configuration space extends much further than the single
major oscillator shell included in the calculation of δC1. To
incorporate the effects of multishell mixing, we note first that
its principal impact is to change the structure of the radial wave
function by introducing mixing with radial functions that have
more nodes. Since this mixing primarily affects protons, it
results in proton radial functions that differ from the neutron
ones so, when the overlap is computed, its departure from unity
determines the value of δC2. The radial functions themselves
are derived from a Woods-Saxon potential. Again there is
a case-by-case adjustment in the Woods-Saxon potentials
to ensure that the different measured proton and neutron
separation energies in the β-decay parents and daughters are
correctly reproduced.

The SM-WS calculations of Towner and Hardy [192] must
clearly be classified as semiphenomenological. A number of
transition-specific nuclear properties have been fitted in their
determination of δC. In contrast, most of the alternative models
discussed in Sec. IV are first-principles theory calculations.

025501-11

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

HT:	shell	model	with	phenomenological		
Woods-Saxon	potenAal	locally	adjusted	to:	
• Masses	of	the	isotriplet	T=1,	0+	(IMME)	
• Neutron	and	proton	separaAon	energies	
• Known	proton	radii	of	stable	isotopes
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MF = ⟨ f |τ+ | i⟩

Tree-level	Fermi	matrix	element

	—	Isospin	operator	
	—	members	of	T=1	isotriplet

τ+

| i⟩, | f ⟩

If	isospin	symmetry	were	exact,	 	

Isospin	symmetry	is	broken	in	nuclear	states		
(e.g.	Coulomb,	nucleon	mass	difference,	…)	

In	presence	of	isospin	symmetry	breaking	(ISB):	

MF → M0 = 2

|MF |2 = |M0 |2 (1 − δC)

ISB	correcAon	is	crucial	for	 	extracAonVud

δC ∼ 0.17% − 1.6%!
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide
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FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.
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FIG. 4. Summary histogram of the fractional uncertainties at-
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contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
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R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide
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standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, K#3, K#2 correct, unitarity
not satisfied. With |Vus | determined from K#3 decays and
|Vus |/|Vud | from K#2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from K#2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on 〈1/W 〉, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on 〈1/W 〉. Since 〈1/W 〉
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.
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bF = − 0.0028(26)
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10−4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = −1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = −1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

〈a;0||M(1)||g;1〉∗〈a;0||V ||g;1〉
Ea,0 − E g,1

−1
2

∑

a %=g

〈a;1||M(1)||g;1〉∗〈a;1||V ||g;1〉
Ea,1 − E g,1

−1
6

∑

a

〈a;2||M(1)||g;1〉∗〈a;2||V ||g;1〉
Ea,2 − E g,1

−
∑

a

〈a;2||V ||g;1〉∗〈a;2||M(1)||g;1〉
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

〈a;0||M(1)||g;1〉∗〈a;0||V ||g;1〉
Ea,0 − E g,1

+
∑

a %=g

〈a;1||M(1)||g;1〉∗〈a;1||V ||g;1〉
Ea,1 − E g,1

−1
3

∑

a

〈a;2||M(1)||g;1〉∗〈a;2||V ||g;1〉
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

〈a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z〉 = C

11;T ′T ′
z

1T z;1T ′′
z
〈a; T ′||M(1)||g;1〉

〈a; T ′, T ′
z|V |g;1, T z〉 = C

11;T ′T ′
z

1T z;10 〈a; T ′||V ||g;1〉, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|〈a;0||V ||g;1〉|2
(Ea,0 − E g,1)2 + 1

2

∑

a %=g

|〈a;1||V ||g;1〉|2
(Ea,1 − E g,1)2

−5
6

∑

a

|〈a;2||V ||g;1〉|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ( Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|〈a; T ||V (1)
C ||g;1〉|2

Ea,T − E g,1
, (18)

with a %= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z〉, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T 〉 are of the 
order (N − Z)/A ( 1. Hence, in this approximation scheme all ma-
trix elements are equal, 〈M; T ||V (1)

C ||g; 1〉 ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

&M(1) =
A∑

i=1

r2
i
&̂T (i) (3)

where &̂T (i) is the isospin operator of the nucleon i, and &ri its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

〈φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ〉, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

〈φ|M(1)
0 |φ〉 = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)

+1|g; 1, 0〉 = −〈g; 1, 1|M(1)
0 |g; 1, 1〉. Hence, the following 

combined experimental observable

'M(1)
A ≡ 〈 f |M(1)

+1|i〉 + 〈 f |M(1)
0 | f 〉 (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

Nuclear	Hamiltonian:	H = H0 + VISB ≈ H0 + VC

Coulomb	potenAal	for	uniformly	charged	sphere

ISB	due	to	IV	monopole,	VISB ≈
Ze2

8πR3 ∑
i

r2
i

̂Tz(i) =
Ze2

8πR3
M̂(1)

0

Same	operator	generates	nuclear	radii
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

&M(1) =
A∑

i=1

r2
i
&̂T (i) (3)

where &̂T (i) is the isospin operator of the nucleon i, and &ri its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

〈φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ〉, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

〈φ|M(1)
0 |φ〉 = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)

+1|g; 1, 0〉 = −〈g; 1, 1|M(1)
0 |g; 1, 1〉. Hence, the following 

combined experimental observable

'M(1)
A ≡ 〈 f |M(1)

+1|i〉 + 〈 f |M(1)
0 | f 〉 (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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In this Letter we explore the connection between δC and a set 
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same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
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A key ingredient in our analysis is the isovector monopole op-

erator,
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sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)
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3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
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R2
CW + O(t2), (5)

where
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CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =
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with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,
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0 |φ〉 = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)
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0 |g; 1, 1〉. Hence, the following 

combined experimental observable
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offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,
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which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
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A,B and δC
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Tz = ± 1 Z±1,0

νe
e+

Ai
Af

W− e− e−

A±1,0 A±1,0

γ
⃗e− e−

Af Af

γZ

0+, T = 1, Tz = − 1
0+, T = 1, Tz = 0

0+, T = 1, Tz = 1

E.g.	42
22Ti →42

21 Sc →42
20 Ca

FCh(Q2) = 1 − R2
ChQ

2 /6 + …APV = −
GFQ2

4 2πα

QW

Z
FNW(Q2)
FCh(Q2)

FCW(Q2) = 1 − R2
CWQ2 /6 + …



29

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

Table 1
Estimation of !M(1)

A and |!M(1)
A /(AR2/4)| from different models. See paragraphs after Eq. (23) for explanations. A few remarks: A = 46, 50 are missing in 

the RPA calculation, while the DFT calculation gives an unusually large δC for A = 38.

Transitions δC (%) !M(1)
A (fm2)

∣∣∣∣
!M(1)

A
AR2/4

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg 0.310 0.329 0.30 0.139 0.08 -2.2 -2.3 -2.1 -1.0 -0.6 3.2 3.3 3.0 1.4 0.8
34Cl →34 S 0.613 0.75 0.57 0.234 0.13 -5.0 -6.1 -4.6 -1.9 -1.0 4.6 5.6 4.3 1.8 1.0
38mK →38 Ar 0.628 1.7 0.59 0.278 0.15 -5.4 -14.6 -5.1 -2.4 -1.3 4.2 11.2 3.9 1.8 1.0
42Sc →42 Ca 0.690 0.77 0.42 0.333 0.18 -6.2 -6.9 -3.8 -3.0 -1.6 4.0 4.5 2.5 2.0 1.1
46V →46 Ti 0.620 0.563 0.38 / 0.21 -5.8 -5.3 -3.6 / -2.0 3.3 3.0 2.0 / 1.1
50Mn →50 Cr 0.660 0.476 0.35 / 0.24 -6.4 -4.6 -3.4 / -2.4 3.1 2.3 1.7 / 1.2
54Co →54 Fe 0.770 0.586 0.44 0.319 0.28 -7.8 -5.9 -4.4 -3.2 -2.8 3.3 2.5 1.9 1.4 1.2

Table 2
Estimation of !M(1)

B and |!M(1)
B /(AR2/2)| from different models.

Transitions !M(1)
B (fm2)

∣∣∣∣
!M(1)

B
AR2/2

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg -0.12 -0.12 -0.11 -0.05 -0.03 0.08 0.09 0.08 0.04 0.02
34Cl →34 S -0.17 -0.21 -0.16 -0.06 -0.04 0.08 0.10 0.07 0.03 0.02
38mK →38 Ar -0.15 -0.42 -0.15 -0.07 -0.04 0.06 0.16 0.06 0.03 0.01
42Sc →42 Ca -0.15 -0.17 -0.09 -0.07 -0.04 0.05 0.06 0.03 0.02 0.01
46V →46 Ti -0.12 -0.11 -0.08 / -0.04 0.03 0.03 0.02 / 0.01
50Mn →50 Cr -0.12 -0.09 -0.06 / -0.04 0.03 0.02 0.02 / 0.01
54Co →54 Fe -0.13 -0.10 -0.07 -0.05 -0.05 0.03 0.02 0.02 0.01 0.01

experimental precision to observe a deviation from zero. Further-
more, the ratio between !M(1)

A,B depends only on κ , so a simul-
taneous measurement of the two may pin down κ , which further 
solidifies their relation to δC.

6. Targeted experimental precision

Following the strategy outlined above, we devise the experi-
mental precision required for the quantities !M(1)

A,B , which would 
allow to address the reliability of the estimates of δC and its un-
certainty in a less model-dependent way. First, to fix the propor-
tionality constant, we take:

Z ≈ A/2, RC ≈
√

5/3 × 1.1 fm × A1/3, (22)

with the standard expectation for the nuclear RMS radius, R ≈
1.1 fm × A1/3, related to the radius of a nucleus as a uni-
form sphere by R2 = (3/5)R2

C . We take further parameters from 
Ref. [24],

V 1 ≈ 100 MeV, ω ≈ 41 MeV × A−1/3, ξ ≈ 3. (23)

More recent discussions of these parameters supporting the above 
choices can be found in Refs. [50,51]. Next, we may, e.g., take the 
estimates of δC available in the literature and substitute them into 
the first line of Eq. (21). This returns an estimate of the size of 
!M(1)

A , which informs, how precise the measurement of this quan-
tity should be to discriminate the model dependence of δC.

Restricting ourselves to superallowed decays with T z,i = 0 and 
T z, f = +1 and requiring the daughter nucleus to be (observation-
ally) stable, we study the transitions with 26 ≤ A ≤ 54. We take 
δC as calculated in the nuclear shell model with the Woods-Saxon 
(WS) potential [10], the density functional theory (DFT) [20], the 
Hartree-Fock (HF) calculation [22], the random phase approxima-
tion (RPA) with PKO1 parameterization [23], as well as the “micro-
scopic” model of Ref. [24,52] which gives δC ≈ 2 ×18.0 ×10−7 A5/3. 

The estimated size of !M(1)
A indicates the targeted absolute preci-

sion in the measurements of 〈 f |M(1)
+1|i〉 and 〈 f |M(1)

0 | f 〉. The lat-
ter implies subtracting two large terms, N R2

n, f /2 and Z R2
p, f /2, 

each of the typical size AR2/4. Therefore, we may use the ratio 
!M(1)

A /(AR2/4) as an estimate of the precision of the RMS radii of 
the nuclear neutron and proton distributions required to probe the 
ISB effects.

The results of our numerical analysis are summarized in Ta-
ble 1. We find that most models predict a generic size of !M(1)

A ∼
1 fm2, with a precision level (1 −3)% needed for the R2

p, f and R2
n, f

measurements in order to probe the isospin mixing effect, i.e. start 
seeing a deviation of !M(1)

A from zero. If it turns out that a non-

zero !M(1)
A is not observed at this precision, it could indicate that 

the actual values of δC are smaller than most existing model pre-
dictions, as suggested in [17,18]. The model predictions for !M(1)

A
span over an order of magnitude for 38mK→ 38Ar, and half that 
range for 34Cl→ 34S and 42Sc→ 42Ca decays, reflecting a similar 
model dependence in δC in these channels. Hence, an experimen-
tal study of !M(1)

A for these systems even at a moderate precision 
will shed light on the model dependence of δC. An analogous anal-
ysis for !M(1)

B is summarized in Table 2; following Eq. (10), we 
use !M(1)

B /(AR2/2) as a measure of the precision goal. We ob-
serve that, due to the κ2-suppression, a much higher precision 
(0.01-0.1)% is required to probe δC experimentally through !M(1)

B .

7. Discussion of the experimental feasibility

To constrain !M(1)
A we need R2

Ch and R2
NW for the stable nu-

cleus, as well as R2
CW. Considering A = 38 where the spread in 

model predictions is as large as an order of magnitude (9), even a 
10% precision of these radii allows to discriminate between mod-
els. The typical R2

Ch precision is per mille or better. R2
NW remains 

to be measured in fixed-target electron-nucleus scattering experi-
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Can	discriminate	models	if	independent	informaAon	on	nuclear	radii	is	available	
	from	measured	radii	—>	test	models	for	 	

Charge	radii	across	superallowed	isotriplets?	
Some	are	known	(but	difficult	—	unstable	isotopes,	some	g.s.	are	not	 )	
Typically,	precision	is	not	enough	to	make	a	quanAtaAve	statement	—	need	to	improve!

ΔMA δC

0+

For	numerical	analysis:	lowest	isovector	monopole	resonance	dominates	
One	ISB	matrix	element,	one	energy	spliqng	

Model	for	 predicAon	for	δC → ΔM(1)
A,B

Electroweak radii constrain ISB in superallowed -decayβ



	Summary:	Status	of	Vud	and	top-row	CKM	unitarity
3-sigma CKM unitarity deficit established 

Significant shift in Vud due to shift in  

EW boxes: DR + Exp. + Lattice QCD+ ChPT +… 

Calculation for  confirmed by several groups 

Formalism applied to  decays;  

Puzzles:  - , Beam-Bottle n-lifetime 

Unified universal RC  and nuclear correction  

Both SM (Vud) and BSM (bF) tests depend on  and  

Direct lattice QCD evaluation of the -box  

Modern ab initio theory of  and  underway! 

BSM: RH currents across light and strange quarks may resolve all puzzles

ΔV
R

ΔV
R

Kℓ3

Kℓ2 Kℓ3

ΔV
R δNS

δC δNS

γW

δC δNS

30

With new UCNW lifetime result (+ Perkeo III), the 
extracted Vud agrees with the CKM unitarity.

47

߬௡ ൌ ͺ͹͹Ǥ͹ͷ േ ͲǤʹͺି଴Ǥଵ଺ା଴Ǥଶଶ

We report a measurement of Wn with 0.34 s (0.039%) uncertainty, improving upon our past results by a factor of 
2.25 using two blinded datasets from 2017 and 2018. The new result incorporates improved experimental and 
analysis techniques over our previous result [Science 360, 627 (2018)]. 
This is the first neutron lifetime measurement precise enough to confront SM theoretical uncertainties. 
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Vus/V
ud

Vus

Vud

Vus

unitarity

fit

Vud

0.222

0.224

0.226

0.960 0.965 0.970 0.975

0+ → 0+

neutron

Status of first-row unitarity

33

Fit results, no constraint

Vud = 0.97378(26)
Vus = 0.22422(36)
χ2/ndf = 6.4/2 (4.1%)
ΔCKM = −0.0018(6)

−2.8σ

68%CL ellipse
Without scaling S = 2.6

With scale factor S = 2.6
Vud = 0.9737(8)
Vus = 0.2242(10)





Status of Vus
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Vus Status and Outlook
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Determination of Vus from Kℓ3 data

3

Inputs from theory:
f+

K0π−(0) Hadronic matrix element 
(form factor) at zero 
momentum transfer (t = 0)

ΔK
SU(2) Form-factor correction for 

SU(2) breaking

ΔKℓ
EM Form-factor correction for 

long-distance EM effects

with K ! {K+, K0};  ℓ! {e, µ}, and:
CK2 1/2 for K+, 1 for K0

SEW Universal SD EW correction (1.0232)

Inputs from experiment:
Γ(Kℓ3(γ)) Rates with well-determined 

treatment of radiative decays:
• Branching ratios
• Kaon lifetimes

IKℓ({λ}Kℓ) Integral of form factor over 
phase space: λs parameterize 
evolution in t

• Ke3: Only λ+ (or λ+′, λ+″)
• Kµ3: Need λ+ and λ0
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|Vus| f+(0) from world data: 2022 update

24

% err BR τ Δ Int

KLe3 0.2162(5) 0.23 0.09 0.20 0.02 0.05

KLµ3 0.2165(6) 0.26 0.15 0.18 0.02 0.07

KSe3 0.2169(8) 0.39 0.38 0.02 0.02 0.05

KSµ3 0.2125(47) 2.2 2.2 0.02 0.02 0.08

K±e3 0.2169(6) 0.30 0.27 0.06 0.11 0.05

K±µ3 0.2168(10) 0.47 0.45 0.06 0.11 0.08

Approx. contrib. to % err from:|Vus| f+(0)

Average: |Vus| f+(0) = 0.21656(35)      χ2/ndf = 1.89/5 (86%)
Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

Evaluations of f+(0)

25

ChPT, etc.

Nf = 2

Nf = 2+1+1

PACS 19
JLQCD 17

RBC/UKQCD 15A
RBC/UKQCD 13
FNAL/MILC 12I

JLQCD 12
JLQCD 11

RBC/UKQCD 10
RBC/UKQCD 07

ETM 10D
ETM 09A

0.95 0.97 0.99

Kastner 08
Cirigliano 05
Jamin 04
Bijnens 03
L&R 84

Nf = 2+1

FLAG ’19
Web update

Dec ’20 FNAL/MILC 18
ETM 16

FNAL/MILC 13E
FNAL//MILC 13C

FLAG ’21 averages:

Nf = 2+1+1 f+(0) = 0.9698(17)
Uncorrelated average of:

FNAL/MILC 18: HISQ, 5sp, mπ→ 135 MeV, 
new ensembles added to FNAL/MILC 13E
ETM 16: TwMW, 3sp, mπ→ 210 MeV, full q2

dependence of f+, f0

Nf = 2+1 f+(0) = 0.9677(27)
Uncorrelated average of:

FNAL/MILC 12I: HISQ, mπ ~ 300 MeV
RBC/UKQCD 15A: DWF, mπ→ 139 MeV
JLQCD 17 not included because only single 
lattice spacing used

ChPT f+(0) = 0.970(8)
Ecker 15, Chiral Dynamics 15:
Calculation from Bijnens 03,
with new LECs from Bijnens, Ecker 14

Vus from Kl3 decays
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Status of first-row unitarity

32

Kµ3
f+(0) = 0.9698(17)
Nf = 2+1+1

Vus = 0.22330(35)exp(39)lat(8)IB

Δ(1)CKM = −0.00176(16)exp+IB(17)lat(51)ud = −3.1σ

Cirigliano et al.
2208.11707

|Vud| = 0.97384(26)
Avg. of results from

0+ → 0+ with ΔR
V = 2.467(27)%

n decays with ΔR = 3.983(27)%

Kµ2
fK/fπ = 1.1978(22)
Nf = 2+1+1

Vus/Vud = 0.23108(23)exp(42)lat(16)IB

Vus = 0.22504(28)exp(41)lat(06)ud
Δ(2)CKM = −0.00098(13)exp(19)lat(53)ud = −1.8σ

ΔVus (Kµ3 – Kµ2) = −0.0174(73)   −2.4σ

Evaluation of ΔRV and ΔRV :
• Hadronic scheme for resummation of infrared logs
• Non correlated average of contributions to γW box
Vud from neutron decays uses current best 
measurements (not averages) for τn and λ = gA/gV
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Vus/Vud and Kℓ2 decays

27

Inputs from theory:

δEM Long-distance EM corrections

δSU(2) Strong isospin breaking
fK/fπ→ fK±/fπ±

fK/fπ Ratio of decay constants
Cancellation of lattice-scale 
uncertainties from ratio
NB: Most lattice results already 
corrected for SU(2)-breaking: fK±/fπ±

Inputs from experiment:

From K± BR fit:
BR(K±

µ2(γ)) = 0.6358(11)
τK± = 12.384(15) ns

From PDG:
BR(π±

µ2(γ)) = 0.9999
τπ± = 26.033(5) ns

Vus / Vud from Kl2 decays
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Vus/Vud and Kℓ2 decays
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Giusti et al. 
PRL 120 (2018)

First lattice calculation of EM corrections to Pl2 decays
• Ensembles from ETM
• Nf = 2+1+1  Twisted-mass Wilson fermions

δSU(2) + δEM = −0.0122(16)
• Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld ’11:
δSU(2) + δEM = −0.0112(21)

Di Carlo et al. 
PRD 100 (2019)

Update, extended description, and systematics of Giusti et al.
δSU(2) + δEM = −0.0126(14)

|Vus/Vud| × fK/fπ = 0.27679(28)BR(20)corr
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Status of first-row unitarity

32

Kµ3
f+(0) = 0.9698(17)
Nf = 2+1+1

Vus = 0.22330(35)exp(39)lat(8)IB

Δ(1)CKM = −0.00176(16)exp+IB(17)lat(51)ud = −3.1σ

Cirigliano et al.
2208.11707

|Vud| = 0.97384(26)
Avg. of results from

0+ → 0+ with ΔR
V = 2.467(27)%

n decays with ΔR = 3.983(27)%

Kµ2
fK/fπ = 1.1978(22)
Nf = 2+1+1

Vus/Vud = 0.23108(23)exp(42)lat(16)IB

Vus = 0.22504(28)exp(41)lat(06)ud
Δ(2)CKM = −0.00098(13)exp(19)lat(53)ud = −1.8σ

ΔVus (Kµ3 – Kµ2) = −0.0174(73)   −2.4σ

Evaluation of ΔRV and ΔRV :
• Hadronic scheme for resummation of infrared logs
• Non correlated average of contributions to γW box
Vud from neutron decays uses current best 
measurements (not averages) for τn and λ = gA/gV
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Lattice results for fK/fπ

30

Recalculate FLAG averages for results without SU(2)-breaking
Isospin-limit results as reported in original papers

Nf = 2+1+1 fK/fπ = 1.1978(22) S = 1.1
ETM 21 New! 1.1995(44)(7)

TM quarks, 3sp, mπ→ physical
Not yet in FLAG ’21 average!
Replaces ETM 14E in our average

Miller 20 1.1964(44)
FNAL/MILC17 1.1980(+13−19)
HPQCD13A 1.1948(15)(18)

Nf = 2+1 fK/fπ = 1.1946(34)*
QCDSF/UKQCD17 1.192(10)(13)
BMW16 1.182(10)(26)
RBC/UKQCD14B 1.1945(45) 
BMW10 1.192(7)(6)
HPQCD/UKQCD07 1.198(2)(7)

Share ensembles
Partially correlated uncertainties
using FLAG prescription

* MILC10 omitted from average
because unpublished

Average is problematic with 
correlations assumed by FLAG, 
dominated by FNAL/MILC17
(symmetrized)
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Vus / Vud from Kl2 decays

36

Existing data from BNL865, KTeV, ISTRA+, KLOE, NA48, NA48/2 
Upcoming data from KLOE-2 and NA62
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Low-energy effective Lagrangian

Semi-leptonic interactions

 εi ~(v/Λ)2 

           VC, Graesser, Gonzalez-Alonso  1210.4553,  JHEPVC,  Gonzalez-Alonso, Jenkins  0908.1754, NPB

Leptonic interactions
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For global analysis of 
beta decays in this 

framework see: 
 

Falkowski, Gonzalez-
Alonso, Naviliat-Cuncic, 

2010.13797
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• General case

εT(s):  suppressed 
by mlept/mK

εS(s) :  shifts the slope of the scalar form factor,  
at levels well below EXP and TH uncertainties

Corrections to Vud and Vus

24

Connect beta decays to UV physics via EFT: Wilson coeffs. of 4-fermion operators

Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

Impact of Kµ3/Kµ2 on unitarity tests

35

Vus from Kℓ3 + Vud from β decays
Vus/Vud from Kµ2 + Vud from β decays
Vus from Kℓ3 + Vus/Vud from Kµ2

• Δ(3)CKM has no inputs from β decays
• Less sensitive as an absolute unitarity test but clearly shows impact 

of new measurements of Vus

Three distinct Cabibbo unitarity deficits may be defined
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Cabibbo Angle Anomaly as a BSM Signal
Right-handed quark couplings

• Right-handed currents (in the ‘ud’ and ‘us' sectors)
Grossman-Passemar-Schacht  

1911.07821 JHEP 
Alioli et al 1703.04751, JHEP

• CKM elements from vector (axial) channels are shifted by  1+εR  (1-εR).                  
Vus/Vud ,  Vud and  Vus  shift in correlated way,  can resolve all tensions! 

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to
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where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.
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The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
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we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
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ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)

R (or
equivalently ✏R and �✏R ⌘ ✏(s)

R � ✏R, normalized as in Ref. [32])
to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
sulting in

�(1)
CKM = 2✏R + 2�✏RV2

us,

�(2)
CKM = 2✏R � 2�✏RV2

us,

�(3)
CKM = 2✏R + 2�✏R

�
2 � V2

us
�
. (9)

The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)

CKM and �(2)
CKM, while �✏R is obtained

from the combination
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V�ud

= 1 � 2�✏R. (10)

Using current input from Eqs. (5) and (7), one obtains:

✏R = �0.69(27) ⇥ 10�3 [2.5�],

�✏R = �3.9(1.6) ⇥ 10�3 [2.4�]. (11)

With a projected measurement of the Kµ3/Kµ2 branching ratio
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the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)

R (or
equivalently ✏R and �✏R ⌘ ✏(s)

R � ✏R, normalized as in Ref. [32])
to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
sulting in
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The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)

CKM and �(2)
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Using current input from Eqs. (5) and (7), one obtains:

✏R = �0.69(27) ⇥ 10�3 [2.5�],

�✏R = �3.9(1.6) ⇥ 10�3 [2.4�]. (11)

With a projected measurement of the Kµ3/Kµ2 branching ratio
at 0.2% level at 2� above the current measurement, the above

Figure 2: Constraints in the �✏R–✏R plane from the �(i)
CKM introduced in Eq. (8).

The bands with positive slope (red) correspond to �(2)
CKM. The bands with small

negative slope (blue) correspond to �(1)
CKM, while the bands with steep negative

slope (green) correspond to �(3)
CKM. The filled bands reflect the current situa-

tion (11), the long-dashed ones the +2� scenario (12), and the short-dashed
ones the opposite case (13). Note that in each case the three bands essentially
overlap by construction, since Vud , Vus, subject to the unitarity constraint, and
the BSM contamination via �✏R, ✏R, amount to three free parameters. The main
impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.

numbers change to

✏R = �0.67(27) ⇥ 10�3 [2.5�],

�✏R = �1.8(1.6) ⇥ 10�3 [1.1�], (12)

while a future measurement at 0.2% with central value 2� be-
low the current one would give

✏R = �0.70(27) ⇥ 10�3 [2.6�],

�✏R = �5.7(1.6) ⇥ 10�3 [3.5�]. (13)

This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)

R (or
equivalently ✏R and �✏R ⌘ ✏(s)

R � ✏R, normalized as in Ref. [32])
to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
sulting in
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CKM = 2✏R + 2�✏RV2
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us,
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The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)

CKM and �(2)
CKM, while �✏R is obtained

from the combination
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Using current input from Eqs. (5) and (7), one obtains:

✏R = �0.69(27) ⇥ 10�3 [2.5�],

�✏R = �3.9(1.6) ⇥ 10�3 [2.4�]. (11)

With a projected measurement of the Kµ3/Kµ2 branching ratio
at 0.2% level at 2� above the current measurement, the above

Figure 2: Constraints in the �✏R–✏R plane from the �(i)
CKM introduced in Eq. (8).

The bands with positive slope (red) correspond to �(2)
CKM. The bands with small

negative slope (blue) correspond to �(1)
CKM, while the bands with steep negative

slope (green) correspond to �(3)
CKM. The filled bands reflect the current situa-

tion (11), the long-dashed ones the +2� scenario (12), and the short-dashed
ones the opposite case (13). Note that in each case the three bands essentially
overlap by construction, since Vud , Vus, subject to the unitarity constraint, and
the BSM contamination via �✏R, ✏R, amount to three free parameters. The main
impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.

numbers change to

✏R = �0.67(27) ⇥ 10�3 [2.5�],

�✏R = �1.8(1.6) ⇥ 10�3 [1.1�], (12)

while a future measurement at 0.2% with central value 2� be-
low the current one would give

✏R = �0.70(27) ⇥ 10�3 [2.6�],

�✏R = �5.7(1.6) ⇥ 10�3 [3.5�]. (13)

This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)

R (or
equivalently ✏R and �✏R ⌘ ✏(s)

R � ✏R, normalized as in Ref. [32])
to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
sulting in
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The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
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non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
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Figure 14: (Left) 90% CL constraints on ✏S,T at µ = 2 GeV from �-decay data, cf. Eq. (87), with ��2 = 4.61, (black ellipse), from the
analysis of pp ! e + MET + X at the 8-TeV LHC (20 fb�1) [12] (blue ellipse), and from radiative pion decay, cf. Eq. (118) [23] (orange
band). The green band shows the 90% CL bound (��2 = 2.71) using only superallowed Fermi decays. (Right) Same figure but using projected
�-decay data, cf. Eq. (100) (black) and projected LHC bounds from pp ! e+MET+X searches with 14 TeV and 300 fb�1 [23] (blue).

Requiring that the leading logarithmic part of the 2-loop correction is not larger than current bounds on the neutrino
mass, the following bounds were found [13]

|✏̃L| . 10�2
, (129)

|✏̃S ± ✏̃P | . 2⇥ 10�3
, (130)

|✏̃T | . 0.5⇥ 10�3
, (131)

where µ = 1 TeV was used as the initial running scale. The bounds on scalar and tensor interactions are about 3 times
stronger than those derived from LHC data in Eqs. (121)-(122) and orders of magnitude stronger than those from � decay,
cf. Section 4.5. The bound on the pseudoscalar coupling is also 3 times stronger than the LHC one, but still weaker than
that from pion decay, cf. Eq. (114). Finally, the neutrino-mass considerations above o↵er a valuable alternative probe for
the ✏̃L coupling, which can also be accessed through CKM unitarity, but with slightly less accuracy, cf. Eq. (79).

5.5. Electric dipole moments

It can be shown that in the SMEFT framework, the same dimension-6 e↵ective operators generating CP-violating
e↵ects in � decay would also generate at tree- or one-loop-level a non-zero nuclear and neutron Electric Dipole Moment
(EDM) [473]. As a result one can translate the stringent EDM bounds [474] in indirect limits on the �-decay CP-
violating coe�cients, such as D or R, which are two orders of magnitudes stronger than their direct limits from �-decay
measurements [13]. This takes into account the calculation of Ref. [475] that relaxed the EDM bound by an order of
magnitude with respect to Ref. [473].

In principle, these indirect bounds can be avoided through a fine-tuned cancellation with additional dimension-6
operators contributing to the EDMs, or using dimension-8 operators. The precise realization in specific models is however
nontrivial, as shown for instance for leptoquark models, where the connection with EDMs is still present, although the
indirect bounds can be relaxed in this case [473]. Finally, the EDM bounds can be avoided abandoning altogether the
SMEFT framework, introducing for example light new particles. Thus, current measurements of CP-violating coe�cients
in � decay can be considered as probes of the SMEFT framework itself, or at least its simpler realizations where large
fine-tunings are not considered. A recent and detailed review of the connection between EDMs and �-decay measurements
is presented in Ref. [13].

6. Conclusions

We have reviewed the role of precision measurements in nuclear and neutron � decay, as useful tools to improve our
understanding of fundamental interactions. Transitions with small nuclear-structure uncertainties (or none in neutron
decay) are used to learn about QCD, to extract the values of fundamental SM parameters such as Vud, and to search for
new physics.

First, we have introduced the theoretical formalism that describes � decay at the elementary level with special attention
to the latest developments, such as the precise calculations of the hadronic charges in the lattice, or the SMEFT framework
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We report a measurement of Wn with 0.34 s (0.039%) uncertainty, improving upon our past results by a factor of 
2.25 using two blinded datasets from 2017 and 2018. The new result incorporates improved experimental and 
analysis techniques over our previous result [Science 360, 627 (2018)]. 
This is the first neutron lifetime measurement precise enough to confront SM theoretical uncertainties. 
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Vud = 0.97378(26)
Vus = 0.22422(36)
χ2/ndf = 6.4/2 (4.1%)
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