

Recent quarkonium results from Belle and Belle II

The 20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) Genova, Italy, 5 - 9 June 2023

Valentina Zhukova

on behalf of the Belle and Belle II collaborations

Jožef Stefan Institute

Ljubljana, Slovenia

Belle II analysis

e⁺e⁻ → ωχ_{bJ}(1P) and X_b → ωΥ(1S) e⁺e⁻ → BB̄, BB̄* and B*B̄*

Belle analysis

•
$$e^+e^- \to B^0_s \bar{B}^0_s X$$

Heavy quarkonium spectroscopy is an excellent laboratory to study non-perturbative QCD

Bottomonium states below $B\overline{B}$ threshold are well described by quark model

Bottomonium states above $B\bar{B}$ threshold demonstrate unexpected properties

- \Rightarrow Z_b and Z'_b are charged (at least 4 quarks)
- Rates of hadronic transition to lower bottomonia are higher then expected for pure $b\bar{b}$ (violate OZI)
- \rightarrow η transitions are not suppressed relative to dipion transitions (violate HQSS)

B*B* BB* BB

Y(10753) state

Energy of Ot

No clear peak in the $e^+e^- \rightarrow B\bar{B}, B\bar{B}^*$ and $B^*\bar{B}^*$

2019 — Belle (<u>JHEP 10 (2019) 220</u>):

Energy dependence of the $\sigma(e^+e^- \rightarrow \Upsilon(1,2,3S) \pi^+\pi^-)$

Observation of new structure – $\Upsilon(10753)$

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$^{2})$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

(JHEP 06 (2021), 137)

What is the nature of $\Upsilon(10753)$?

Various theoretical interpretations:

• Conventional *bb* state:

Phys.Rev.D 105, 074007 (2022), Phys.Rev.D 104, 034036 (2021), Eur.Phys.J.C 80 (2020) 1, 59, Phys.Rev.D 101, 014020 (2020), Phys.Rev.D 102, 014036 (2020), Eur.Phys.J.Plus 137, 357 (2022), Phys.Rev.D 105 (2022) 11, 114041, Phys.Lett.B 803, 135340 (2020), Phys.Rev.D 106 (2022) 9, 094013, Prog. Part. Nucl. Phys. 117, 103845 (2021), ...

• Tetraquark:

Phys.Lett.B 802, 135217 (2020), Phys.Rev.D 103, 074507 (2021), arXiv:2205.11475, Chin. Phys. C 43, 123102 (2019), ...

• Hybrid:

Phys.Rev.D 104, 034019 (2021), Phys.Rept. 873, 1 (2020), ...

$\Upsilon(10753)$ as $\Upsilon(3D)$ state:

- width is consistent with predictions
 (see e.g. <u>Eur. Phys. J. C 78, 915 (2018)</u>)
- mass does not match existing theoretical predictions
- D-wave state is not seen in e^+e^-

$\Upsilon(4S) - \Upsilon(3D)$ mixing scheme:

Phys. Rev. D 104, 034036 (2021) predictions

Channel	Branching fraction $(\times 10^{-3})$
$\Upsilon(10753) ightarrow \omega \chi_{b0}$	0.73-6.94
$\Upsilon(10753) ightarrow \omega \chi_{b1}$	0.25-2.16
$\Upsilon(10753) ightarrow \omega \chi_{b2}$	1.08-11.5

Such decays could be observed at Belle II

)

N. HÜSKEN, R. E. MITCHELL, and E. S. SWANSON

Global phenomenological analysis

see Eric Swanson's talk on Wednesday

PRD 106 (2022) 9,094013

Used data: $B\overline{B}, B^*\overline{B}, B^*\overline{B}^*, B^*\overline{B}^*, B^*_S\overline{B}^*_S, \Upsilon(1S)\pi^+\pi^-,$ $\Upsilon(2S)\pi^{+}\pi^{-}, \Upsilon(3S)\pi^{+}\pi^{-}, h_{b}(1P)\pi^{+}\pi^{-},$ $h_b(2P)\pi^+\pi^-$, and $\sigma_{b\bar{b}}$

Poles for:

 $\Upsilon(4S), \Upsilon(10750), \Upsilon(5S), \Upsilon(6S)$

Note:

fit to the two-body data only also required $\Upsilon(10750)$

Indirect confirmation of the $\Upsilon(10750)$

Global phenomenological analysis

Large gaps between scan points near 10.75 GeV

Large uncertainty in the scattering amplitudes in this energy region

• Rich physics program

2D unbinned likelihood fit

Observation of e⁺e⁻ $\rightarrow \omega \chi_{b,I}(1P)$ at \sqrt{s} near 10.75 GeV

Born cross sections from signal yield

Belle @ $\sqrt{s} = 10.867$ GeV: PRL 113 (2014) 14, 142001 $\sigma(e^+e^- \to \omega \chi_{b1}) = (0.76 \pm 0.16) \text{ pb}$ $\sigma(e^+e^- \to \omega \chi_{b2}) = (0.29 \pm 0.14) \text{ pb}$

first observation of $\Upsilon(10753) \rightarrow \omega \chi_{hI}(1P)$ no peak at $\Upsilon(10860)$

2D unbinned likelihood fit

4		Belle II, 1.6 fi √s = 10.701 G	o ⁻¹ eV	Belle II, 1.6 f √s = 10.701 G	ieV 4
_F	B I				1-
Cl	nannel	$\sqrt{s} \; (\text{GeV})$	N^{sig}	$\sigma_B ~(\mathrm{pb})$	
e^+e^-	$\to \omega \chi_{b0}$		$0.0^{+1.1}_{-0.0}$	< 16.6	
e^+e^-	$\to \omega \chi_{b1}$	10.701	$0.0^{+2.1}_{-0.0}$	< 1.2	
e^+e^-	$\to \omega \chi_{b2}$		$0.1^{+2.2}_{-0.1}$	< 2.5	
e^+e^-	$\to \omega \chi_{b0}$		$3.0^{+5.5}_{-4.7}$	< 11.3	6
e^+e^-	$\to \omega \chi_{b1}$	10.745	$68.9^{+13.7}_{-13.5}$	$3.6^{+0.7}_{-0.7} \pm 0.5$	
e^+e^-	$ ightarrow \omega \chi_{b2}$		$27.6^{+11.6}_{-10.0}$	$2.8^{+1.2}_{-1.0} \pm 0.4$	*
e^+e^-	$\to \omega \chi_{b0}$		$3.6^{+3.8}_{-3.1}$	< 11.4	. 6
e^+e^-	$\to \omega \chi_{b1}$	10.805	$15.0^{+6.8}_{-6.2}$	< 1.7	5
e^+e^-	$\to \omega \chi_{b2}$		$3.3^{+5.3}_{-3.8}$	< 1.6	
2					
0 9.75	9.8 9.85	9.9 9.95	0.7	0.8 0.9	
	M(γΥ(1S)) [GeV/c ²]	Μ(7	τ ⁺ π ⁻ π ⁰) [GeV/c ²]	

Observation of e⁺e⁻ $\rightarrow \omega \chi_{b,I}(1P)$ at \sqrt{s} near 10.75 GeV

Born cross sections from signal yield

Belle @ $\sqrt{s} = 10.867$ GeV: PRL 113 (2014) 14, 142001 $\sigma(e^+e^- \to \omega \chi_{b1}) = (0.76 \pm 0.16) \text{ pb}$ $\sigma(e^+e^- \to \omega \chi_{b2}) = (0.29 \pm 0.14) \text{ pb}$

first observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}(1P)$ no peak at $\Upsilon(10860)$

Search for X_b at \sqrt{s} near 10.75 GeV (<u>PRL 130 091902 (2023)</u>)

• Reflection from $\Upsilon(10753) \rightarrow \omega \chi_{b1,2}$

Shapes of $\Upsilon(10753) \rightarrow \omega \chi_{bI}$ were taken from MC and normalised to data

• No significant X_h signal is observed

• Set upper limits with the Bayesian approach:

\sqrt{s} , GeV	$M(X_b), \mathrm{GeV/c^2}$	$\sigma_{X_b}^{\mathrm{UL}},\mathrm{pb}$
10.653	10.59	0.55
10.701	10.45	0.84
10.745	10.45	0.14
10.805	10.53	0.47

Measurement of the energy dependence of the $e^+e^- \rightarrow B\bar{B}, B\bar{B}^*$ and $B^*\bar{B}^*$ cross section at Belle II

Method

(Previous Belle analysis JHEP 06 (2021), 137)

Full reconstruction of one B meson in hadronic channels γ from $B^* \to B\gamma$ is not reconstructed Use $M_{\rm bc}$ to identify $B\bar{B}, B\bar{B}^*$ and $B^*\bar{B}^*$ final states

$$M_{\rm bc} = \sqrt{E_{\rm cm}^2/4 - p_B^2}$$
$$\Delta E = E_B - E_{\rm cm}/2$$

For convenience $\Delta E \rightarrow \Delta E'$

$$\Delta E' = \Delta E + M_{\rm bc} - m_B$$

$M_{\rm bc}$ fit at scan energies

- Good description of the data
- Distinct signals for different final states BB, BB* and B*B*

 $B^{(*)}ar{B}^{(*)}$

Visible contribution from $\Upsilon(4S)$ produced via ISR (included in the fitting function)

• Sharp cut of the data at right edge for E=10.653 GeV \implies fast rise of $B^*\bar{B}^*$ near threshold

$$\implies \sigma(B^{(*)}\bar{B}^{(*)})$$

Energy dependence of the cross sections

Combined Belle + Belle II:

simultaneous fit to

- total cross section (<u>Chin.Phys.C 44 (2020) 8, 083001</u>)

exclusive cross sections (previous Belle measurement <u>JHEP 06 (2021), 137</u> + this work) and

$\sigma_{\mathbf{b}\bar{\mathbf{b}}}$ VS $\sigma_{\mathbf{B}\bar{\mathbf{B}}} + \sigma_{\mathbf{B}\bar{\mathbf{B}}*} + \sigma_{\mathbf{B}*\bar{\mathbf{B}}*}$

- In agreement at low energies cross check
- Deviation at higher energy is due to $B_s^{(*)}$, multi-body $B^{(*)}\overline{B}^{(*)}\pi(\pi)$, and bottomonia

New measurements significantly supplement previous Belle results

solid curve — fit to combined Belle+BelleII points, dashed curve — fit Belle points only

Above the $B^*\bar{B}^*$ threshold $\sigma(e^+e^- \to B^*\bar{B}^*)$ rises very rapidly Similar behaviour seen for the $D^*\bar{D}^*$ cross section (PRD 97, 012002 (2018))

Possible interpretation: resonance or bound state near threshold (Mod. Phys. Lett. A 21, 2779 (2006))

Also explains narrow dip in $e^+e^- \rightarrow B\bar{B}^*$ near $B^*\bar{B}^*$ threshold

Discussion

The first combined analysis of the $b\bar{b}$ system above $B\bar{B}$ threshold

N. HÜSKEN, R. E. MITCHELL, and E. S. SWANSON

 $B_s^{(*)}\bar{B}_s^{(*)}$ channel — the current data doesn't constrain the fit function well

Need to improve the accuracy in $B_s^{(*)} \overline{B}_s^{(*)}$ channel

• Reconstruct inclusive D_s and D^0 at each energy scan point, • $x_p = \frac{p}{p_{max}}$ is used to separate continuum and $b\bar{b}$ - events;

 $\sigma(D_{s}X)$ and $\sigma(D^{0}X)$

• Measured cross sections can be expressed as:

 $\begin{aligned} \sigma(D_s X)/2 &= \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) + \mathscr{B}(B \to D_s X) \cdot \sigma(B \bar{B} X) \\ \sigma(D^0 X)/2 &= \mathscr{B}(B_s \to D^0 X) \cdot \sigma(B_s \bar{B}_s X) + \mathscr{B}(B \to D^0 X) \cdot \sigma(B \bar{B} X) \end{aligned}$ Solving eq's system: $\sigma(B_{c}\bar{B}_{c}X)$ and $\sigma(B\bar{B}X)$ $\mathscr{B}(B_{s} \to D_{s}X)$ has large uncertainty $\mathscr{B}(B_{c} \to D^{0}X)$ is not measured, only prediction

Measurement of the $e^+e^- \rightarrow B_s^0 \overline{B}_s^0 X$ cross section in the energy range from 10.63 to 11.02 GeV using inclusive D_s⁺and D⁰ production at Belle (arXiv:2305.10098)

No B_s at energy point near $\Upsilon(4S)$:

At energy point near $\Upsilon(5S)$:

$$\begin{split} \sigma(D_s X) \mid_{\Upsilon(5S)} &/2 = \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) \mid_{\Upsilon(5S)} + \mathscr{B}(B \to D_s X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)} \\ \sigma(D^0 X) \mid_{\Upsilon(5S)} &/2 = \mathscr{B}(B_s \to D^0 X) \cdot \sigma(B_s \bar{B}_s X) \mid_{\Upsilon(5S)} + \mathscr{B}(B \to D^0 X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)} \\ C &= \frac{\mathscr{B}(B_s \to D^0 X)}{\mathscr{B}(B_s \to D_s X)} = \frac{\sigma(D^0 X) \mid_{\Upsilon(5S)} - \mathscr{B}(B \to D^0 X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)}}{\sigma(D_s^{\pm} X) \mid_{\Upsilon(5S)} - \mathscr{B}(B \to D_s X) \cdot \sigma(B \bar{B} X) \mid_{\Upsilon(5S)}} \\ \\ \hline \text{We can measure using } \Upsilon(5S) \text{ data} & \text{We can measure using } \Upsilon(4S) \text{ data} & \text{from JHEP 06 (2021) 137} \end{split}$$

At scan points:

$$\begin{cases} \sigma(D_s X)/2 = \mathscr{B}(B_s \to D_s X) \cdot \sigma \\ \sigma(D^0 X)/2 = C \cdot \mathscr{B}(B_s \to D_s X) \end{cases}$$

Solving eq's system:

Method

Measure with high accuracy $\mathscr{B}(B \to D_s X)$, $\mathscr{B}(B \to D^0 X)$

 $\sigma(B_{s}\bar{B}_{s}X) + \mathscr{B}(B \to D_{s}X) \cdot \sigma(B\bar{B}X)$ $() \cdot \sigma(B_{S}\bar{B}_{S}X) + \mathscr{B}(B \to D^{0}X) \cdot \sigma(B\bar{B}X)$

energy dependence of the $\sigma(B_s \overline{B}_s X) \cdot \mathscr{B}(B_s \to D_s X)$ and $\sigma(B\overline{B}X)$

Results at $\Upsilon(4S)$ and $\Upsilon(5S)$

$$\mathscr{B}(B \to D^0 X) = \frac{\sigma(D^0 X)|_{\Upsilon(4S)}}{2 \cdot \sigma(e^+ e^- \to b\bar{b})|_{\Upsilon(4S)}} = (66.63 \pm 2 \cdot \sigma(e^+ e^- \to b\bar{b}))|_{\Upsilon(4S)}$$

 $C = \frac{\mathscr{B}(B_s \to D^0 X)}{\mathscr{B}(B_s \to D_s X)} = 0.416 \pm 0.018 \pm 0.092$ $\Upsilon(5S)$ data:

 $\pm 0.04 \pm 1.77)\%$

$$(71.6 \pm 4.6)\%$$

 $(61.6 \pm 2.9)\%$

Results at $\Upsilon(4S)$ and $\Upsilon(5S)$

Fractions of $B_{s}\bar{B}_{s}X$ events produced at $\Upsilon(5S)$:

$$f_{\rm s} = \frac{\sigma(e^+e^- \to B_s \bar{B}_s X)|_{\Upsilon(5S)}}{\sigma(e^+e^- \to b\bar{(}b))|_{\Upsilon(5S)}} = (23$$

To improve accuracy we fit

 $f_{\rm s} = (23.0 \pm 0.2 \pm 2.8) \%$ $f_{B\bar{B}X} = (75.1 \pm 4.0)\%$ JHEP 06 (2021) 137 $f_{\varkappa}^{\text{known}} = (4.9 \pm 0.6)\%$ JHEP 06 (2021) 137

with one constraint

$$f_s + f_{B\bar{B}X} + f_{B} = 1$$

from the fit: $f_s = (22.0^{+2.0}_{-2.1})\%$

Result from the fit:

Source	Systematic uncertainty (?
$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) _{\Upsilon(5S)}$	1.4
$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) _{\Upsilon(4S)}$	0.7
$\sigma(e^+e^- \to B\bar{B}X) _{\Upsilon(5S)}$	1.4
$\mathcal{B}(B^0_s \to D^\pm_s X)$	10.5
$\sigma(e^+e^- ightarrow b\bar{b}) _{\Upsilon(5S)}$	4.5
Correlated contributions	
$-\operatorname{tracking}$	1.1
$-K/\pi$ identification	2.3
$-r_{\phi}$	0.6
$- {\cal B}(D^+_s o K^+ K^- \pi^+)$	1.9
Total	12.0

Belle

PRD 105 (2022) 1,012004

 $\mathcal{B}(B_c \to D_c X) = (60.2 \pm 5.8 \pm 2.3)\%$

Results for $\sigma(e^+e^- \rightarrow B_s\bar{B}_sX)$ and $\sigma(e^+e^- \rightarrow B\bar{B}X)$

• Belle II has a rich quarkonium program

- Unique data sample collected near $E_{\rm cm} \sim 10.75 \, {\rm GeV}$ • The first observation of $\Upsilon(10753) \rightarrow \omega \chi_{hI}(1P)$
- Measured energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$
- Belle data still in business
 - Measured energy dependence of $\sigma(e^+e^- \to B_s \bar{B}_s X)$ and $\sigma(e^+e^- \to B\bar{B}X)$

Thank you very much for your attention!

Backup

Observation of e⁺e⁻ $\rightarrow \omega \chi_{b,I}(1P)$ and search for $X_b \rightarrow \omega \Upsilon(1S)$ at \sqrt{s} near 10.75 GeV (<u>PRL 130 091902 (2023</u>)

 X_{b} : bottomonium counterpart candidate of the X(3872)? Phys. Rev. Lett. 91, 262001 (2003)

$e^+e^- \rightarrow \omega \chi_{bI}(1P)$: Signal yield

$$\sigma^{\text{Born}}(e^+e^- \to \omega\chi_{bJ}) = \frac{N^{\text{sig}} |1 - \Pi|^2}{\mathscr{L}\varepsilon \mathscr{B}_{\text{int}}(1 + \delta_{\text{ISF}})}$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$e^{+}e^{-} \rightarrow \omega \chi_{b0} \qquad 0.0^{+1.1}_{-0.0} < 16.6$ $e^{+}e^{-} \rightarrow \omega \chi_{b1} \qquad 10.701 \qquad 0.0^{+2.1}_{-0.0} < 1.2$ $e^{+}e^{-} \rightarrow \omega \chi_{b2} \qquad 0.1^{+2.2}_{-0.1} < 2.5$ $e^{+}e^{-} \rightarrow \omega \chi_{b0} \qquad 3.0^{+5.5}_{-4.7} < 11.3$ $e^{+}e^{-} \rightarrow \omega \chi_{b1} \qquad 10.745 \qquad 68.9^{+13.7}_{-13.5} \qquad 3.6^{+0.7}_{-0.7} \pm 0$ $e^{+}e^{-} \rightarrow \omega \chi_{b2} \qquad 27.6^{+11.6}_{-10.0} \qquad 2.8^{+1.2}_{-1.0} \pm 0$ $e^{+}e^{-} \rightarrow \omega \chi_{b1} \qquad 10.805 \qquad 15.0^{+6.8}_{-6.2} < 1.7$ $e^{+}e^{-} \rightarrow \omega \chi_{b2} \qquad 3.3^{+5.3}_{-3.8} < 1.6$		Channel	$\sqrt{s} \; ({\rm GeV})$	N^{sig}	$\sigma_B \ (\mathrm{pb})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$e^+e^- \to \omega \chi_{b0}$		$0.0^{+1.1}_{-0.0}$	< 16.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$e^+e^- \to \omega \chi_{b1}$	10.701	$0.0^{+2.1}_{-0.0}$	< 1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$e^+e^- \to \omega \chi_{b2}$		$0.1^{+2.2}_{-0.1}$	< 2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$e^+e^- \to \omega \chi_{b0}$		$3.0^{+5.5}_{-4.7}$	< 11.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$e^+e^- \to \omega \chi_{b1}$	10.745	$68.9^{+13.7}_{-13.5}$	$3.6^{+0.7}_{-0.7} \pm 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	`	$e^+e^- \to \omega \chi_{b2}$		$27.6^{+11.6}_{-10.0}$	$2.8^{+1.2}_{-1.0} \pm 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$e^+e^- \to \omega \chi_{b0}$		$3.6^{+3.8}_{-3.1}$	< 11.4
$e^+e^- \to \omega \chi_{b2} \qquad \qquad 3.3^{+5.3}_{-3.8} < 1.6$		$e^+e^- \to \omega \chi_{b1}$	10.805	$15.0^{+6.8}_{-6.2}$	< 1.7
		$e^+e^- \to \omega \chi_{b2}$		$3.3^{+5.3}_{-3.8}$	< 1.6

Belle @ $\sqrt{s} = 10.867$ GeV: $\sigma(e^+e^- \to \omega \chi_{b1}) = (0.76 \pm 0.16) \text{ pb}$ $\sigma(e^+e^- \to \omega \chi_{h2}) = (0.29 \pm 0.14) \text{ pb}$ PRL 113 (2014) 14, 142001

 $\sigma(e^+e^- \to \omega \chi_{b1,2})$ peaks at $\Upsilon(10753)$

No obvious peak at $\Upsilon(10860)$ is found

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{b1,2}$

$\Gamma_{ee} \mathcal{B}_f$	Solution I, eV	Solution II
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})$	$0.63 \pm 0.39 \pm 0.20$	$2.01 \pm 0.38 \pm$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})$	$0.53 \pm 0.46 \pm 0.15$	1.32 ± 0.44 =

2D unbinned likelihood fit to $M(\gamma \Upsilon(1S))$ vs. $M(\pi^+\pi^-\pi^0)$

4	Belle II, 1.6 fb ⁻¹ √s = 10.701 GeV	Belle II, 1.6 fb ⁻¹ √s = 10.701 GeV
3		3
2		12

Experiment vs Theory:

Measured ratio:

$$\frac{\sigma(e^+e^- \to \omega \chi_{b1})}{\sigma(e^+e^- \to \omega \chi_{b2})} \approx$$

$$\frac{\sigma(e^+e^- \to \omega \chi_{b1})}{\sigma(e^+e^- \to \omega \chi_{b2})} :$$

$$\sigma(e^+e^- \to \omega \chi_{b1})$$

$$\sigma(e^+e^- \to \omega \chi_{b2})$$

 χ_{bJ} – Crystal Ball, ω – BW \otimes Gauss (resolution)

$e^+e^- \rightarrow \omega \chi_{b,I}(1P)$: Signal yield

$$\sigma^{\text{Born}}(e^+e^- \to \omega\chi_{bJ}) = \frac{N^{\text{sig}} |1 - \Pi|^2}{\mathscr{L} \varepsilon \mathscr{B}_{\text{int}} (1 + \delta_{\text{ISF}})}$$

$$\overline{\text{Channel} \quad \sqrt{s} \text{ (GeV)} \quad N^{\text{sig}} \quad \sigma_B \text{ (pb)}}$$

- 1.3 ± 0.6
- at odds with expectations for a pure D-wave bottomonium (Phys. Lett. B 738, 172 (2014))
 - = 15
- tension with prediction for a S-D-mixed state (Phys. Rev. D 104, 034036 (2021))
 - = (0.18 0.22)

 $\sigma(e^+e^- \to \omega \chi_{b1,2})$ peaks at $\Upsilon(10753)$

No obvious peak at $\Upsilon(10860)$ is found

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{b1,2}$

$\Gamma_{ee} \mathcal{B}_f$	Solution I, eV	Solution II
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})$	$0.63 \pm 0.39 \pm 0.20$	2.01 ± 0.38 ±
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})$	$0.53 \pm 0.46 \pm 0.15$	1.32 ± 0.44 ±

Method

• Reconstruct inclusive D_s and D^0 at each energy scan point, $x_p = \frac{p}{m}$ is used to separate continuum and $b\bar{b}$ - events; p_{max}

$$\sigma(e^+e^- \to b\bar{b} \to D_s X)$$
 and $\sigma(e^+e^- \to b\bar{b}$

• Measured cross sections can be expressed as:

$$\begin{cases} \sigma(e^+e^- \to b\bar{b} \to D_s X)/2 = \mathscr{B}(B_s \to D_s X) \cdot \sigma(e^+e^-) \\ \sigma(e^+e^- \to b\bar{b} \to D^0 X)/2 = \mathscr{B}(B_s \to D^0 X) \cdot \sigma(e^+) \\ \text{Solving eq's system:} \quad \sigma(e^+e^- \to B_s\bar{B}_s X) \text{ and } \sigma(e^+) \end{cases}$$

 $\mathscr{B}(B_s \to D_s X)$ has large uncertainty $\mathscr{B}(B_{c} \to D^{0}X)$ is not measured, only prediction

 $e^- \to B_s \bar{B}_s X) + \mathscr{B}(B \to D_s X) \cdot \sigma(e^+ e^- \to B\bar{B}X)$ $^+e^- \to B_{\rm s}\bar{B}_{\rm s}X) + \mathscr{B}(B \to D^0X) \cdot \sigma(e^+e^- \to B\bar{B}X)$ $e^+ \to B\bar{B}X$

> $\sigma(e^+e^- \to B_s \bar{B}_s X) = \sigma(e^+e^- \to B_s^{(*)} \bar{B}_s^{(*)})$ up to $B_s \bar{B}_s \pi^0 \pi^0$ threshold (11.004 GeV)

x_p spectra at $\Upsilon(5S)$ and $\Upsilon(4S)$ data

Red points — on-resonance data

We fit the large x_p part of the on-resonance spectra to find the continuum contribution in the $b\bar{b}$ region

Fitting function — shape of the x_p spectra for the data below the $\Upsilon(4S)$

0.05

Blue hatched histograms —fit results Open dashed histograms extrapolation of the continuum component

We subtract the continuum component to obtain pure bb spectra

