Charm meson and charm-meson molecule in an expanding hadron gas

Li-Ping He

Universität Bonn

Collaborators:

Eric Braaten, Roberto Bruschini, Kevin Ingles, Ohio State University Jun Jiang, Shandong University

Based on arXiv:2209.04972, 2303.08072

Heavy-ion collisions

- 2 Thermal mass shifts and widths for charm mesons in a pion gas
- Sevolution of charm-meson abundance: after kinetic freeze-out
 - 4 Loosely bound charm-meson molecule in a pion gas

Heavy-ion collisions: Overview

The standard model of heavy-ion collisions is a multi-stage model

- **S1** Initial Collision
 - Impact parameter/centrality, energy deposition
- S2 Thermalization
 - Hydrodynamic/transport modeling
- S3 Hadronization
 - Hadron production at phase transition
- S4 Kinetic freeze-out
 - Hadrons stop interacting, momentum distributions frozen

State-of-the-art models consist of complex numerical simulations for each stage

Credit: Chun Shen, Wayne State University

At $T_{H}=156~{\rm MeV},$ quarks and gluons become confined to hadrons in process called "hadronization"

- A simple model for light hadron production: Statistical Hadronization Model (SHM)
 Abundance of light hadron is given by a Bose-Einstein distribution
- A simple model for charm hadron production: **SHMc** Abundance of charm hadron can be approximated by a relativistic Boltzmann distribution multiplied by charm-quark fugacity determined by the conservation of charm quark number

Andronic et al. NPA 772, 167 (2006), JHEP 07, 035 (2021), PLB 571, 36 (2003)

Heavy-ion collisions: Kinetic freeze-out

At kinetic freeze-out, all interactions are assumed to stop. A more appropriate assumption: the end of thermal equilibrium (hadron can continue to interact after kinetic freeze-out)

The hadron gas can be approximated by a pion gas.

- temperature fixed at $T = T_F$
- volume continues to expand with proper time τ :

$$V(\tau) = \pi \left[R_F + v_F (\tau - \tau_F) \right]^2 c\tau$$

• pion number density decreases in inverse proportion to the volume:

$$\mathfrak{n}_{\pi}(\tau) = [V(\tau_F)/V(\tau)]\mathfrak{n}_{\pi}(\tau_F)$$

- pion momentum distributions are frozen and given by Bose-Einstein distributions with temperature $T_{\cal F}$

In a pion gas, charm meson and pion properties are modified by the interactions with the pion gas.

Thermal self-energies in a pion gas arise primarily from **coherent pion forward scattering**.

 D self-energy diagrams from coherent pion forward scattering in HH $\chi \rm EFT$ at LO

Thermal self-energies in a pion gas arise primarily from **coherent pion forward scattering**.

Real rest energies as functions of the temperature ${\cal T}$

Real rest energy at T = real rest energy at T = 0 + thermal mass shift

Dashed line: LO in heavy meson expansion ($m_{\pi} \ll M_D$) Solid line: NLO in heavy meson expansion

Dashed line: LO in heavy meson expansion Solid line: NLO in heavy meson expansion

Thermal mass shifts and widths: Comparison with previous work

T [MeV]	FMFK ¹		MRTT ²		
	D	D^*	D	D^*	
100	-7 - 8i	-6 - 12i	-13 - 17i	-12 - 17i	
	CMR ³		this work		
	D	D^*	D	D^*	
100	0 - 15i	0 - 10i	1.07 - 0.064i	-0.15 - 0.015i	

 $\delta M - i\delta\Gamma$ for charm mesons in MeV.

There are orders-of-magnitude discrepancies. Possible reasons:

• low-temperature constraints from chiral symmetry are violated in the previous work.

¹Fuchs et al., PRC **73**, 035204 (2006). ²Montana et al., PLB **806**, 135464 (2020), PRD **102**, 096020 (2020) ³Cleven et al., PRC **96**, 045201 (2017)

Thermal mass shifts and widths: Comparison with previous work

Lattice QCD calculations of charm meson masses: At T = 47,95,109,127 MeV, the thermal mass shifts of D and D^* were consistent with 0. At T = 152 MeV, $\delta m_D = -20 \pm 7$ MeV, $\delta m_{D^*} = -43 \pm 10$ MeV. Lattice QCD does not yet provide useful results for the thermal shifts in charmmeson masses at temperatures well below the hadronization temperature.

Aarts et al., arXiv:2209.14681

thicker (thinner) lines: widths with mass shift (not) taken into account

Evolution of charm-meson abundances: Overview

All previous studies have assumed that D^{\ast} just decays after kinetic freeze-out but has no other interactions

 D^{*0} decays into D^0 at 100% D^{*+} decays into D^0 at B_{+0} and D^+ at $1-B_{+0}$ $\left(B_{+0}=0.677\pm0.005\right)$

Naïve equations for final charm-meson abundances are

 $N_0 = (N_0)_0 + (N_{*0})_0 + B_{+0} (N_{*+})_0$ $N_+ = (N_+)_0 + 0 (N_{*0})_0 + (1 - B_{+0}) (N_{*+})_0$

SHMc predictions gives $(N_0/N_+)_{\rm naïve} = 2.256 + 0.014$, the error-bar is only from $B_{\pm 0}$

Andronic et al. JHEP 07, 035 (2021)

Evolution of charm-meson abundances: *t*-channel singularities

We exploit the fact that charm mesons still interact after kinetic freeze-out (a) $D^{*a} \leftrightarrow \pi D^{b}$ (b) $\pi D^{a} \leftrightarrow \pi D^{b}$ (c) $\pi D^{*a} \leftrightarrow \pi D^{b}$ (d) $\pi D^{*a} \leftrightarrow \pi D^{*b}$, ... There are *t*-channel singularities in the reaction $\pi D^{*} \rightarrow \pi D^{*}$

Definition

A *t*-channel singularity is a divergence in the rate of a reaction in which an unstable particle decays and one of its decay products scatters. The divergence arises if the exchanged particle can be on-shell.

Evolution of charm-meson abundances: t-channel singularities

t-channel singularities were first discussed by Peierls in 1961 for πN^* scattering

In the diagram, the exchanged nucleon Ncan be on shell because the N^* can decay into $N\pi$. This leads to a divergence in the cross section

Peierls suggested that the N^* width be inserted into N propagator However, this still leads to unphysically large cross sections

Peierls, PRL 6, 641-643 (1961)

t-channel singularities

Charm-meson reaction $\pi D^* \to \pi D^*$ can have t-channel singularity because the exchanged D can be on-shell

In the case of elastic scattering, the t-channel singularity region is

$$2M_*^2 - M^2 + 2m^2 < s < \left(M_*^2 - m^2\right)^2 / M^2$$

Interval in \sqrt{s} for $\pi^0 D^{*0} \to \pi^0 D^{*0}$ is 2 MeV .

For production in heavy-ion collisions, $t\mbox{-}{\rm channel}$ singularities can be regularized by thermal width of D

$$\text{cross section} \propto \frac{1}{\text{thermal width}} : \langle v\sigma[\pi D^{*+}, \pi D^{*0}] \rangle = \frac{1}{3\mathfrak{n}_{\pi}} \frac{\Gamma_{*0,0}\Gamma_{*+,0}}{\Gamma_{*0,0} + \Gamma_{*+,0}}$$

Evolution of charm-meson abundances

Evolution of charm-meson abundances

Using initial conditions provided by the predictions from SHMc

$$(N_0/N_\pi, N_+/N_\pi, N_{*0}/N_\pi, N_{*+}/N_\pi)_0 = 10^{-3} (2.76, 2.64, 3.37, 3.28)$$

Fractions: f_{D^0} (blue), f_{D^+} (red), $f_{D^{*0}}$ (cyan), and $f_{D^{*+}}$ (magenta)

 $N_0/N_+ = 2.100$ at the detector, differs from $(N_0/N_+)_{\text{naïve}} = 2.256 + 0.014$ by 11σ .

Li-Ping He

Charm meson and charm-meson molecule

Evolution of charm-meson abundances

At late times, $\mathfrak{n}_\pi\ll 10^{-3}\mathfrak{n}_\pi^{\rm (eq)}$, the only terms that remain in the evolution equations are 1-body terms:

- decay terms
- *t*-channel singularities: e.g. reaction rate $\langle v\sigma_{\pi^*+,\pi^*0} \rangle$ for $\mathfrak{n}_{\pi} \to 0$ has form

$$\langle v\sigma[\pi D^{*+}, \pi D^{*0}] \rangle = \frac{1}{3\mathfrak{n}_{\pi}} \frac{\Gamma_{*0,0}\Gamma_{*+,0}}{\Gamma_{*0,0} + \Gamma_{*+,0}}$$

factor $1/\mathfrak{n}_{\pi}$ cancels with \mathfrak{n}_{π} in evolution equations

Resulting system of differential equations can be solved exactly. Difference between naïve prediction and analytic prediction with the *t*-channel singularity is significantly different from 0 at 13σ :

$$\left(\frac{N_0}{N_+}\right)_{\rm na\"ive} - \left(\frac{N_0}{N_+}\right)_{\rm analytic} = 0.079 \pm 0.006$$

errors come from $B_{+0}, B_{00}, \Gamma_{*+}$ and Γ_{*0}

Loosely bound charm-meson molecule: Overview

amplitude for the propagation of D and D^* between contact interactions

$$S_0(E_{\rm cm}) = \sqrt{-2\mu \left[E_{\rm cm} - (\varepsilon_* + \varepsilon) + i\epsilon \right]}, \quad S_1(E_{\rm cm}) = \sqrt{-2\mu \left[E_{\rm cm} + i\epsilon + \dots \right]}$$

28

Loosely bound charm-meson molecule: Self-energy

Two-loop diagram for $\Sigma(E_{cm}, P)$ from coherent pion forward scattering

Loosely bound charm-meson molecule: Self energy

complete amplitude in a pion gas:

$$\frac{i(2\pi/\mu)}{\frac{2\pi/\mu}{C_1} - \Lambda + S_0(E_{\rm cm}) + \Sigma(E_{\rm cm}, P)} = \frac{i(2\pi/\mu)Z_X}{-(\gamma_X + \delta\gamma_X) + S_1(E_{\rm cm}, P) + \dots}$$

$$S_1(E_{\rm cm}, P) = \sqrt{-2\mu \left[E_{\rm cm} - (\varepsilon_* + \varepsilon) - (\delta \varepsilon_* + \delta \varepsilon) - \zeta_X P^2 / (2M_X) + i\epsilon \right]}$$

Loosely bound charm-meson molecule: Thermal mass shifts and widths

Pole energy of molecule with zero 3-momentum at NLO:

 $E_X = (\varepsilon_{*a} - i\Gamma_{*a}/2) + \varepsilon_b + (\delta\varepsilon_{*a} + \delta\varepsilon_b) - (\gamma_X + \delta\gamma_X)^2/(2\mu).$

 $\delta\varepsilon_{*a}, \delta\varepsilon_{b}$: thermal energy shift for charm mesons $\delta\gamma_X$: correction to the binding momentum

X(3872) pole energy from LHCb: (0.025 - 0.140i) MeV X(3872) pole energy in a pion gas at T = 115 MeV: (1.64 - 0.21i) MeV $T_{cc}^+(3875)$ pole energy from LHCb: (-0.36 - 0.024i) MeV $T_{cc}^+(3875)$ pole energy in a pion gas at T = 115 MeV: (1.20 - 0.10 i) MeV

Thermal contribution from correction to the binding momentum is negligible compared to those from charm meson constituents

LHCb, JHEP **08**, 123 (2020) LHCb, Nature Commun. **13**, 3351(2022)

Loosely bound charm-meson molecule: Thermal mass shifts and widths

Pole energy of molecule with zero 3-momentum at NLO:

 $E_X = \left(\varepsilon_{*a} - i\Gamma_{*a}/2\right) + \varepsilon_b + \left(\delta\varepsilon_{*a} + \delta\varepsilon_b\right) - \left(\gamma_X + \delta\gamma_X\right)^2/(2\mu).$

Dashed lines: charm-meson thresholds

Loosely bound charm-meson molecule: Comparison with previous work

Thermal mass shifts and widths for $X(3872)$ at $T=100\ {\rm MeV}$							
	$M_X - M_{DD*}^{T=0}$	δM_{DD*}	$\delta\Gamma_X$	$M_X - M_{DD^*}$ at $T = 0$			
CMR ¹ [MeV]	+3	0	30	-2.5			
MRTT ² [MeV]	-30	-27	30	-4			
This work	0.97	1.00	0.11	0.025			

There are orders-of-magnitude discrepancies. Possible reasons:

• low-temperature constraints from chiral symmetry are violated in the previous work.

 1 Cleven *et al.*, PLB **799**, 135050 (2019): the $D^\ast D$ threshold was somehow held constant at its T=0 value 2 Montana *et al.*, arXiv:2211.01896

Prompt production of X(3872) in PbPb collisions

CMS, Phys. Rev. Lett. 128, 032001 (2022)

prompt X-to- ψ' ratio ~ 1 , order of magnitude larger than in pp collisions

Summary

- (a) We calculated the thermal mass shifts and widths of $D^{(*)}$ mesons to NLO in the heavy-meson expansion
- (b) We have identified an aspect of charm-meson physics in which the effects of the *t*-channel singularity is observable
- (c) Our findings provide encouragement to study other effects of t-channel singularities, such as in the production of loosely bound charm-meson molecules in heavy-ion collisions
- (d) Thermal corrections to a loosely bound charm-meson molecule in a pion gas come primarily from the complex thermal energy shift of the charmmeson constituents.
- (e) It is encouraging to observe loosely bound charm-meson molecules in the hadron gas from the heavy-ion collisions.

Thank you for your attention.