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Introduction

◮ X (3872) was discovered by the Belle collaboration.

◮ We do not know what is the structure of this state.

◮ We know at present it is Jπ = 1+, C = +1 state,
similarly as the well known χc(1

+) quarkonium.

◮ Different scenarios were proposed:
(a) cc̄ state
(b) DD∗ molecular state
(c) tetraquark cc̄qq̄

(d) hybrid state

◮ Can the production of X (3872) in proton-proton and/or
e+e− collisions provide new information ?



Introduction

◮ kt -factorization gives good description of inclusive D-meson distributions
(Maciula-Szczurek).
Higher orders are needed in collinear approach.

◮ kt -factorization gives good description of D0 − D̄0 correlation observables
(Maciula-Szczurek).

◮ kt -factorization gives good description of ηc (1S) production
(Babiarz-Schäfer-Szczurek).

◮ Here we shall consider production of X(3872) taking into account three
different approaches for its structure, within the kt -factorization approach.

◮ We shall use modern unintegrated gluon distributions.

◮ A. Cisek, W. Schäfer and A. Szczurek, arXiv:2203.07827, Eur.Phys.J.C882,
2022) 1062. “Structure and production mechanism of the enigmatic X(3872) in
high-energy hadronic reactions”.

◮ I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek, “Probing the structure of
χc (3872) with photon transition form factors”, Phys. Rev. D107 (2023)
L071503.

◮ I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek. “Light-front approach to
axial-vector quarkonium γ∗γ∗, form factors”, JHEP ((2022) 054018.



Formalism, structure

◮ cc̄ state, R’(0) extracted from the Eichten-Quigg study
(Schrödinger equation)

◮ DD∗ molecule

|X (3782)〉 = 1√
2

(

|DD̄∗〉+ |D̄D∗〉
)

. (1)

◮ hybrid approach (Coito, Rupp, van Beveren 2013)

|X (3782)〉 = α|cc̄〉+ β√
2

(

|DD̄∗〉+ |D̄D∗〉
)

. (2)



Quarkonium spectra

Figure: Mass spectrum of charmonia.



Formalism, production mechanism
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Figure: Generic diagrams for the inclusive process of X (3872)
production in proton-proton scattering via two gluons fusion.

adequate for the kT -factorization calculations



Formalism, production of cc̄ state

The inclusive cross section for X (3872)-production via the
2→ 1 gluon-gluon fusion mode is obtained from

dσ

dyd2p
=

∫

d2q1

πq2
1

F(x1, q
2
1, µ

2
F )
∫

d2q2

πq2
2

F(x2, q
2
2, µ

2
F )

δ(2)(q1 + q2 − p) × π

(x1x2s)2
|Mg∗g∗→X(3872)|2 .(3)



Formalism, production of cc̄ state

Here the matrix element squared for the fusion of two off-shell
gluons into the 3P1 color singlet cc̄ charmonium is (see e.g.
Kniehl-Saleev-Vasin for a derivation):

|Mg∗g∗→X(3872)|2 = (4παS)2 4|R ′(0)|2
πM3

X

q2
1q2

2

(M2
X + q2

1 + q2
2)

4

×
(

(q2
1 + q2

2)
2 sin2 φ+ M2

X (q2
1 + q2

2 − 2|q1||q2| cos φ)
)

, (4)

where φ is the azimuthal angle between q1, q2.



Formalism, production of cc̄ state
The momentum fractions of gluons are fixed as

x1,2 = mT exp(±y)/
√

s , (5)

where m2
T = p2 + M2

X .
The derivative of the radial quarkonium wave function at the
origin is taken for the first radial p-wave excitation from
Eichten-Quigg 2019, |R ′(0)|2 = 0.1767 GeV

5.
The unintegrated gluon parton distribution functions (gluon
uPDFs) are normalized such, that the collinear glue is obtained
from

xg(x , µ2
F) =

∫ µ2
F d2k

πk2F(x , k2, µ2
F ) . (6)

The hard scale is taken to be always µF = mT , the transverse
mass of the X (3872).



Formalism, production of the molecule

The parton-level differential cross section for the cc̄
production, formally at leading-order, reads:

dσ(pp → QQ̄ X )

dy1dy2d2p1d2p2

=

∫

d2k1

πk2
1

F(x1, k
2
1, µ

2
F )

∫

d2k2

πk2
2

F(x2, k
2
2, µ

2
F )

×δ(2) (k1 + k2 − p1 − p2)
1

16π2(x1x2s)2
|Moff−shell

g∗g∗→cc̄ |2 . (7)

whereMoff−shell

g∗g∗→QQ̄
is the off-shell matrix element for the hard

subprocess (Catani et al.), we use its implementation from
(Maciula-Szczurek)



Formalism, production of the molecule

Here, one keeps exact kinematics from the very beginning and
additional hard dynamics coming from transverse momenta of
incident partons. Explicit treatment of the transverse
momenta makes the approach very efficient in studies of
correlation observables. The two-dimensional Dirac delta
function assures momentum conservation. The gluon uPDFs
are evaluated at longitudinal momentum fractions:

x1 =
mT1√

s
exp(+y1) +

mT2√
s

exp(+y2) , (8)

x2 =
mT1√

s
exp(−y1) +

mT2√
s

exp(−y2), (9)

where mTi =
√

p2
Ti + m2

c is the quark/antiquark transverse
mass.



Formalism, production of the molecule

In the present analysis we employ the heavy c-quark
approximation and assume that three-momenta in the pp-cm
frame are equal:

~pD = ~pc . (10)

This approximation could be relaxed in future.

We calculate krel = 1
2

√

M2
cc̄ − 4m2

c .
In the following for illustration we shall therefore assume
kmax = 0.2 GeV.
kDD

max is then smaller.
The calculation for the SPS molecular scenario is done using
the VEGAS algorithm for Monte-Carlo integration.



Production of molecules, probabilities

We now should take into account the fragmentation into D,D∗-mesons. The
fragmentation fractions fulfill the sum rule:

∑

i

f (c → Hi ) = 1 . (11)

In this formula Hi are the final (after strong decays) hadrons. Therefore the spin-1 D∗

mesons should not be included here as it would lead to double counting. The final
charmed particles are only those which have only weak decays: D+,D0,D+

s ,Λc , etc.
The D0 (or D̄0) are produced directly or come from the decays of spin-1 mesons (see
PDG):

Br(D∗0 → D0) = 1 , Br(D∗+ → D0) = 0.68 . (12)

f (c → D0) = 0.54− 0.63 . (13)

The total uncertainties is less than ∼ 10%.
The total probability can be decomposed as the sum:

f (c → D0) = f (c → D0)|direct + f (c → D0)|feeddown . (14)



Production of molecules, probabilities

The direct component can be approximated as:

f (c → D0)|direct ≈ f (c → D±)|direct , (15)

assuming isospin symmetry.
Let us calculate therefore the feeddown probability:

f (c → D0)|feeddown = f (c → D∗0)Br(D∗0 → D0) + f (c → D∗+)Br(D∗+ → D0) ,

f (c → D+)|feeddown = f (c → D∗+)Br(D∗+ → D+) . (16)

Then the direct contributions can be calculated from

f (c → D0)|direct = f (c → D0)− f (c → D0)|feeddown , (17)

f (c → D+)|direct = f (c → D+)− f (c → D+)|feeddown . (18)



Production of molecules, probabilities

f (c → D0) = f (c̄ → D̄0) = 0.547 , (19)

f (c → D+) = f (c̄ → D−) = 0.227 , (20)

f (c → D∗0) = f (c̄ → D̄∗0) = 0.237 , (21)

f (c → D∗+) = f (c̄ → D̄∗−) = 0.237 . (22)

Here we have assumed that f (c → D∗0) = f (c → D∗+).
We then obtain an isospin symmetric result:

f (c → D0)|direct = 0.15 , f (c → D+)|direct = 0.15 . (23)

We summarize that the direct contribution is much smaller than the total one
including feeddown.
In the following we shall show results obtained from the total fragmentation fraction
as well as using only the direct production fraction for D0. The arguments are related
to lifetime of D∗ mesons. This will be discussed below.
The cross section for cc̄ production are then multiplied by

1

2
[f (c → D0)f (c̄ → D̄∗0) + f (c → D∗0)f (c̄ → D̄0)] =

{

0.036 direct

0.13 including feeddown.
(24)



Lifetime of D
∗ mesons and formation of the

molecule

The lifetime of D∗ was estimated by theoretical calculation (not measured!) to be
cτ ≈ 2000 fm (Henriksson et al.).

After such a long time, in general, D0 from the decay of D∗ may be far away from the
associated D∗0 – so formation of the molecule may be difficult.

However, the condition on relative momentum of D and D∗ mesons selects mesons
flying almost parallel to each other.

In such a system, in a somewhat naive calculation (non-interacting mesons), the
probability that together with a D0 there exists a D∗0 that has not decayed yet to
produce a X(3872) at a time t can be estimated as:

P = (1− exp(−t/τ)) exp(−t/τ) < 0.25. (25)

This suggests that in reality one should rather include only directly produced D0 (or
D̄0). This strongly reduces the cross section and causes that the purely molecular
scenario is disfavoured – the corresponding dσ/dpT (see results) is below the
experimental data.



Production of molecule via double parton

scattering
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Figure: A generic diagram for the inclusive process of X (3872)
production in proton-proton scattering via the double parton
scattering mode.



Production via double parton scattering

The corresponding cross section is calculated in the so-called
factorized ansatz as:

∆σ =
1

2σeff

∫

dσcc̄

dy1d2p1

dσcc̄

dy2d2p2

dy1d
2p1dy2d2p2

∣

∣

∣

∣

krel<kmax

.

(26)
Above the differential distributions of the first and second
parton scattering dσ

dyi d2p
i

are calculated in the kT -factorization

approach as explained above. In the following we take σeff =
15 mb (Maciula,Szczurek).
The differential distributions (in pT of the X (3872) or
ydiff = y1− y2, etc.) are obtained by binning in the appropriate
variable.



Production via double parton scattering

We include all possible fusion combinations leading to
X (3872):

c1 → D0, c̄2 → D̄∗0 , (27)

c1 → D∗0, c̄2 → D̄0 , (28)

c̄1 → D̄0, c2 → D∗0 , (29)

c̄1 → D̄∗0, c2 → D0 . (30)

This leads to the multiplication factor two times bigger than
for the SPS contribution.



Unintegrated gluon distributions
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Figure: Some unintegrated gluon distributions as a function of k2
t

for a given x = 10−5 and factorization scale µ2 = 100 GeV2.



Results, X(3872) production as cc̄ state
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Results, X(3872) production as cc̄ state

 (GeV)
T

p
0 10 20 30 40 50 60 70

dy
 (

nb
/G

eV
)

T
/d

p
σ

 d×
B

R
 

-810

-710

-610

-510

-410

-310

-210

-110

1

10
ATLAS

 KScc
 KMRcc
 JH2013cc
 KMRDD
 KMRdDD

|y|<0.75
 = 8 TeVs



Results, X(3872) production as cc̄ state
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Results, molecular picture

Figure: Distribution in krel for different windows of pt,cc̄ = pt,X

(left panel) for the CMS kinematics. In the right panel we show
the cross sections divided by k2

rel . In these calculations the KMR
UGDF with the MMHT NLO collinear gluon distribution was used.

pt,X (GeV) = (0,5), (5,10), (10,15), (15,20), (20,25), (25,30)



Results, molecular picture

Figure: Azimuthal correlations between cc̄ that fullfill the
condition krel < 0.2 GeV. Here the CMS cuts were imposed. We
show contribution of SPS (solid line) and DPS (dashed line). All
D0 included.



Results, hybrid model
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Figure: Transverse momentum distribution of X (3872) for the
CMS, ATLAS and LHCb experiments. Shown are results for the
KMR UGDF. We show results for different combinations of α and
β: (1,0), (0,1), (0.5,0.5).
No effect of D∗ lifetime.

Lifetime arguments suggest, however, that rather small
probabilities of the molecular component are preferred.



e
+
e
− → e

+
e
−

X (3872)

◮ The X (3872) state was discovered by the Belle
collaboration in 2003.

◮ A future Belle-2 could provide a detailed cross sections
which could be used to verify the underlying picture.

◮ There are already some data from Belle-1 (2020)
(bound on the reduced width).

◮ The hadronic reactions suggests large cc̄ components of
X (3872). There the underlying mechanism is
gg → X (3872).

◮ In e+e− reaction the underlying mechanism is:
γ∗γ∗ → X (3872).
In general, both photons can be virtual. In a first stage
one can study γ∗γ → X (3872) (single electron tag
events).



γ∗γ∗ → 1++ amplitudes, a reminder
The invariant amplitude can be written as (our third paper):

1

4παem

Mµνρ = i

(

q1 − q2 +
Q2

1 −Q2
2

(q1 + q2)2

)

G̃µν
M

2X
FTT (Q2

1 ,Q
2
2)

+ iǫLµG̃νρ
1√
X

FLT (Q2
1 ,Q

2
2) + iǫLνG̃µρ

1√
X

FTL(Q
2
1 ,Q

2
2)

where
G̃µν = ǫµναβqα1 q

β
2 .

The form factors fulfill symmetry relations:

FTT (Q2
1 ,Q

2
2) = −FTT (Q2

2 ,Q
2
1) , FLT (Q2

1 ,Q
2
2) = −FTL(Q

2
2 ,Q

2
1) .

At Q2
1 = 0 or Q2

2 = 0 for QQ̄ state even extra relation:

FTT (Q2, 0) = −Q

M
FLT (Q2, 0) .



Transition form factors, one virtual photon

Let us consider asymmetric situations (Q2
1 , 0) or (0,Q2

2).

1 − z,−k

γ∗

L
(Q2)

z,k

q2 → 0

c

c̄

q+
2 = 0

χ
c1(2P )

Figure: An illustration of the meson production mechanism in
photon-photon fusion in the light-cone dipole picture, with relevant
ingredients and kinematics.



Transition form factors, one virtual photon

Due to the Landau-Yang theorem, at least one off-shell photon
is required for χc1 production in the photon-photon fusion
channel.
We utilize the Light-Front (LF) approach to transition form
factors in the Drell-Yan frame (Brodsky 1997).
Here, the longitudinal photon with spacelike virtuality
Q2

1 ≡ −q2
1 carries four-momentum q1 = (q1+, q1−, 0⊥), with

q1− = −Q2
1/(2q1+) and polarization vector

εL = 1/Q1 (q1+,−q1−, 0⊥), while the plus-momentum of the
second photon vanishes q+

2 = 0, such that q2 = (0, q2−, q2).
In the real photon limit, Q2

2 ≡ −q2
2 = q2

2 → 0, i.e. when its
transverse momentum q2 → 0, the transition amplitude
vanishes linearly with q2 enabling us to extract the relevant
form factor.



Transition form factor, one real photon

Indeed, in the considered frame, the LF plus component of the
EM current is free from parton number changing and
instantaneous fermion exchange contributions (Brodsky, 1998).

〈χc1(λA)|J+(0)|γ∗L(Q2)〉 = 2q1+

√

Nc

∫

dzd2k

z(1− z)16π3

×
∑

λ,λ̄

Ψ
(λA)∗

λλ̄
(z , k) (q2 · ∇k )ΨγL

λλ̄
(z , k,Q2) . (32)



Transition form factor, one real photon

Above, the summation over the (anti)quark color indices has
been performed, Nc = 3 is the number of colors in QCD, and
we introduced the LF helicity λA = ±1, 0 of the axial meson
χc1, as well as cc̄ → χc1 and γ∗L → cc̄ LFWFs, Ψ

(λA)∗

λλ̄
and

ΨγL

λλ̄
, respectively. The integration is over the internal LF

momenta of quark (c) and antiquark (c̄), namely, the LF
momentum fraction z = kc+/q1+ of the c-quark and its
transverse momentum k as illustrated in the figure. The
(anti)quark coupling to the external field conserves the LF
helicities λ, λ̄ of quark and antiquark, whose ±1/2 values are
denoted by ↑ and ↓, respectively.



Transition form factor, one real photon

Furthermore, it is instructive to utilize the general covariant
parametrization of the γ∗γ∗ → χc1 amplitude (Babiarz et al.),
which is similar to the one found in Poppe and is based on
γ∗γ∗ c.m. frame helicity amplitudes. We notice that only one
term contributes to the transition amplitude of interest in the
limit Q2

2 → 0,

εµLn−νMµνρE
∗ρ → 4παem G̃νρn

ν
−E ∗ρ

FLT(Q2, 0)

q1 · q2

, (33)

where αem = e2/4π is the fine structure constant, E = E (λA)
is the polarization vector of the axial meson, n− = (0, 1, 0⊥),
and G̃νρ ≡ ενραβqα1 q

β
2 .



Transition form factor, one real photon

We choose the LF spin projection λA = +1, and obtain:

〈χc1(+1)|J+(0)|γ∗L(Q2)〉 = 2q1+
q2x − iq2y√

2

×
√

4παemFLT(Q2, 0)

Q2 + M2
χ

, (34)

in terms of the considered χc1 meson mass
Mχ = (3871.65± 0.06) MeV
and the photon-meson transition form factor FLT(Q2, 0).



Transition form factor, one real photon
Combining this expression with Eq. (32) and using the well-known expression for the
perturbative LF wave function of the longitudinal photon’s cc̄ component
(Kovchegov-Levin book, 2012),

Ψ
γL

λλ̄
(z , k,Q2) = eec

√

z(1− z)
2z(1− z)Q

k2 + ǫ2
δλ,−λ̄ , (35)

with ǫ2 = m2
c + z(1− z)Q2, charm (anti)quark mass mc , and the electric charge of

the charm quark is ec = 2/3, one arrives at the LFWF representation of the transition
form factor:

fLT(Q2)

Q2 + M2
χ

= −2
√

2Nc ec

∫

dzd2k

16π3

kx + iky

[k2 + ǫ2]2

×
√

z(1− z)

{

Ψ
(+1)∗
↑↓

(z , k) + Ψ
(+1)∗
↓↑

(z , k)

}

. (36)

The dimensionless transition from factor fLT(Q2) ≡ FLT(Q2, 0)/Q takes a finite value
in the limit Q2 → 0.
The representation of Eq. (36) can also be derived from more general expressions for
the transition form factors for two spacelike virtual photons found earlier in Babiarz et
al. 2022.



Results for transition form factor

In our analysis, we adopt two different approaches.

◮ The first approach is based on cc̄ radial wave functions in
the cc̄-pair rest frame obtained by solving the
Schrödinger equation for a variety of phenomenologically
viable potential models. Then, one appropriately
transforms both the resulting radial wave functions
(Terentev prescription), and their spin-orbital components
(Melosh rotation) in order to describe the boosted meson
states in the Drell-Yan frame.

◮ In the second approach, we have used the LFWFs from
numerical results of Li, Maris, Vary. 2017.



Results for transition form factor
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Figure: The dimensionless γ∗Lγ → χc1(2P) transition form factor
fLT(Q2) found in Eq. (36).

The dimensionless transition from factor
fLT(Q2) ≡ FLT(Q2, 0)/Q takes a finite value in the limit
Q2 → 0.



Reduced width

Due to Landau-Yang theorem

Γγγ = 0 . (37)

Therefore the so-called reduced γγ decay width of χc1 given in
the limit of the vanishing projectile photon virtuality was
introduced

Γ̃γγ = lim
Q2→0

M2
χ

Q2
ΓLT
γ∗γ∗(Q

2, 0,M2
χ)

=
πα2

emMχ

3
f 2
LT(0) . (38)



Results for reduced width

Table: The reduced width of the χc1(2P) state for several models
of the charmonium wave functions with specific c-quark mass.

cc̄ potential mc (GeV) fLT(0) Γ̃γγ (keV)
harmonic oscillator 1.4 0.041 0.36
power-law 1.334 0.033 0.24
Buchmüller-Tye 1.48 0.029 0.18
logarithmic 1.5 0.025 0.14
Cornell 1.84 0.018 0.07
BLFQ 1.6 0.044 0.42

First evidence for the production of χc1(3872) in single-tag e+e− collisions (Belle
2020) and X(3872)→ J/ψπ+π−.
From three measured events, they provided a range for its reduced width,

0.02 keV < Γ̃γγ < 0.5 keV. (39)

This result has recently been updated by Achasov et al. using a corrected value for the
branching ratio Br(χc1(3872) → π+π−J/ψ) and reads

0.024 keV < Γ̃γγ(χc1(3872)) < 0.615 keV (40)



Results for the reduced width

Using nonrelativistic quark model relations, Achasov et al.
2022 provided the following estimate

Γ̃γγ(χc1(3872)) ≈ 0.35 keV ÷ 0.93 keV . (41)

Even with the large dependence on the cc̄ potential, all our
results, including the BLFQ approach, lie well within the
experimentally allowed range.
Therefore, γ∗γ data do not exclude the cc̄ option, although
there is some room for a contribution from an additional
meson-meson component.
No estimates for the reduced width in the molecular scenario
are available.



Conclusions
◮ The structure of famous X (3872) is not known.

◮ Can the production of X (3872) in proton-proton
scattering be a new source of information ?

◮ We have calculated production of X (3872) as the cc̄ in
the kt-factorization approach within nonrelativistic
approach for the g∗g∗ → X (3872) vertex with modern
unintegrated distributions.
A reasonable results have been obtained.

◮ We have done similar calculation for the DD∗ fusion. cc̄

is calculated in the kt-factorization approach. D and D̄∗

mesons calculated in infinitly heavy quark approximation.
A reasonable results have been obtained.

◮ Having in mind the finite lifetime of D∗ mesons we have
shown results for both directly produced D0 and for all
D0, including the feeddown contribution.



Conclusions

◮ In addition, a hybrid model (mixture of cc̄ and molecular
component).
A reasonable results have been obtained.

◮ All three (naive) approaches describe the LHC data for
pp → X (3872).

◮ The lifetime argument discussed here for the first time
suggests that in reality one should rather include only
directly produced D0 (or D̄0). This strongly reduces the
cross section and causes that the purely molecular
scenario is disfavoured.

◮ Therefore in the hybrid scenario the probability of the
molecular component should not be too big.



Conclusions for e
+

e
− → e

+
e
−

X (3872)

◮ We have made predictions for FLT form factors in the cc̄

scenario.
It cannot be verified at present (but Belle-2)

◮ The obtained so-called γγ reduced width is consistent
with a poor Belle-1 data In contrast to Li, Li, Vary.

◮ A possibility to study the transition form factor and
reduced width with the EIC.


