

June, 2023

K-MATRIX ANALYSIS OF BOTTOMONIUM IN e^+e^-

Eric Swanson

Nils Hüsken

Ryan Mitchell

N. Hüsken, R.E. Mitchell, E.S. Swanson, K-matrix Analysis of e^+e^- Annihilation in the Bottomonium Region, 2204.11915

Motivation

Seek a comprehensive unitary analysis of all channels $e^+e^- \rightarrow$ bottom

New data makes thresholds evident, fits should move beyond Breit-Wigners.

Previous $\Upsilon(5S)$ branching fractions were estimated by measuring ee -> <final state> near $\Upsilon(5S)$ and dividing by ee -> all. This only works if $\Upsilon(5S)$ is produced in isolation (now known to be false!).

Three-body final states can provide additional constraints to the fit.

Many channels + thresholds, desire for unitarity => K-matrix formalism

$$-C$$
$$K^{-1} = \mathcal{M}^{-1} + i\rho - R$$

Chew-Mandelstam function

 $\mathscr{M} = (1 + KC)^{-1}K = K(1 + CK)^{-1} = K(K + KCK)^{-1}K$

$$\rho_{\mu,\nu} = \delta_{\mu,\nu} \frac{k_{\nu}(s)}{8\pi S_{\nu}\sqrt{s}}.$$

Chew-Mandelstam function

$$\mathcal{M}_{\mu,ee} = \sum_{\nu} (1 + \hat{K}\hat{C})_{\mu,\nu}^{-1} P_{\nu}$$

Aitchison "P-vector" hat = reduced channel space

$$K_{\mu,\nu} = \sum_{R} \frac{g_{R:\mu}g_{R:\nu}}{m_{R}^{2} - s} + f_{\mu,\nu}$$

Incorporate three-body channels

i. implement as quasi two-body (as is usually done)ii. implement as a perturbative three-body channel

$$\mathcal{M}_{\Delta,ee} = \sum_{\nu} F_{\nu}^{(\Delta)} (1 + \hat{C}\hat{K})_{\nu,ee}^{-1}$$

similar to Aitchison, but for the final state

Examples of the "F vector"

$$F^{(\Delta)}_{\mu} = f_{\Delta:\mu}$$

$$F_{\mu}^{(\Delta)} = \sum_{R} \frac{g_{R:\Delta}g_{R:\mu}}{m_{R}^{2} - s}$$

$$F_{\mu}^{(\Delta)} = \frac{g_{R:\mu} \cdot g_{R:f_0} \gamma \cdot g_{f_0:\pi\pi}}{(m_R^2 - s)(m_{f_0}^2 - s_{\pi\pi})}$$

$$\mu \qquad \Delta$$

$$\mu \qquad R \qquad \Delta$$

$$\pi$$

$$\mu \qquad R \qquad \pi$$

$$\mu \qquad R \qquad \gamma$$

Coupling model

$$g_{R:\mu}(s) = \hat{g}_{R:\mu} \left(\frac{k_{\mu}(s)}{\beta}\right)^{\ell_{\mu}} \cdot \exp[-k_{\mu}^2(s)/\beta^2]$$

$$f_{\mu,\nu} = \hat{f}_{\mu,\nu} \cdot \left(\frac{k_{\mu}(s)}{\beta}\right)^{\ell_{\mu}} \cdot \left(\frac{k_{\nu}(s)}{\beta}\right)^{\ell_{\nu}} \cdot \exp\left[-\left(\frac{k_{\nu}^2(s) + k_{\mu}^2(s)}{\beta^2}\right)\right]$$

High energy damping in the 'background' terms helps fit robustness.

Poles and Residues

Search for poles on various sheets

Residues from Cauchy's theorem

$$\operatorname{Res}_{\mu} = \frac{i}{N} \sum_{n=1}^{N} \mathcal{M}_{\mu,\mu}(s_n) \cdot \frac{\rho_{\mu}(s_n)}{\sqrt{s_n}} \cdot \left(s_n - m_{\text{pole}}^2\right)$$

Ghost Poles

Can arise due to spurious noninvertibility of (1+CK).

Identify by anomalous residues and behaviour under rescaling the couplings $\hat{g} \rightarrow \lambda \hat{g}$.

fitting procedure:

fit total xsec below BB* with BB channel and a single resonance add three additional resonances

iterate:

add a new channel to absorb difference between inclusive and exclusive data

refit

add dummy channel

iterate:

add a three body channel refit

blue = three-body + f

15

model variation recapitulates bootstrap variation

hadronic scattering cross sections

pole positions (+ 1000 bootstrap datasets)

couplings and branching fractions

couplings and branching fractions

Discussion

masses

[BW params, poles, quark model eigenvalues, LGT plateaus]

Discussion

 $\Gamma(ee)$ (keV)

state	RPP	our estimate	LS	GM	SOEF
$\Upsilon(4S)$	0.272	(0.003 - 0.62)	0.31	0.39	0.21
$\Upsilon(5S)$	0.31	(0.037 - 0.068)	0.28	0.33	0.18
$\Upsilon(6S)$	0.13	(0.043 - 0.074)	0.26	0.27	0.15
$\Upsilon(10750)$	$(0.01 - 0.40)^{a}$	(0.004 - 0.10)		2.38 eV $^{\rm b}$	

^a from ambiguous solutions in Ref. [5]

^b assuming a 3D state

Conclusions & Observations

First comprehensive and unitary analysis of ee to bottom. First determination of absolute branching ratios of all four states.

 $\Upsilon(10750)$ is confirmed.

 $\Gamma_{ee}(10750) = 0.06(0.06)$ keV.

 $\Upsilon(4S)$ is 10-20 MeV higher in mass than RPP.

 $\Upsilon(6S)$ width is twice RPP value.

 Γ_{ee} are significantly smaller than RPP and quark models for higher n. Indications that open bottom strong decays of higher N states are not well modelle

Missing channels for 5S and 6S are likely dominated by $Z_b^{(')}$. Data near 10750 and above 11000 MeV would be very helpful!

~thank you~